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Introduction

In the mid 70’s, Aubin-Yau [Aub76, Yau78] solved the problem of the
existence of Kahler metrics with constant negative or identically zero Ricci
curvature on compact Kéahler manifolds. In particular, they proved the
existence and regularity of the solution of the complex Monge-Ampere
equation

(w + ddp)" = fur

where the reference form w is Kahler and the density f is smooth.

In this thesis we look at degenerate complex Monge-Ampére equations,
where the word “degenerate” stands for the fact that the reference class
is merely big and not Kahler or that the densities have some divisorial
singularities.

When looking at an equation of the type

(0 +dd°p)" = (*)

where p is a positive measure, it is not always possible to make sense of the
left-hand side of (%). It was nevertheless observed in [GZ07] and [BEGZ10]
that a construction going back to Bedford and Taylor enables in this global
setting to define the non-pluripolar part of the would-be positive measure
(0 + dd°p)™ for an arbitrary #-psh function, where 6 represents a big class.

The notion of big classes is invariant by bimeromorphism while this
is not the case in the Kahler setting. It is therefore natural to study the
invariance property of the non-pluripolar product in the wider context of big
cohomology classes. We indeed show that it is a bimeromorphic invariant.

Generalizing the Aubin-Mabuchi energy functional (cf. [Aub84, Mab86]
and [BB10] for the extension to the singular setting), in [BEGZ10] the authors
introduced weighted energies associated to big cohomology classes. Under
some natural assumptions, we show that such energies are also bimeromorphic
invariants.

We also investigate probability measures with finite energy (this concept
was introduced in [BBGZ13]) and we show that this notion is a biholomorphic
but not a bimeromorphic invariant. Furtheremore, we give criteria insuring
that a given measure has finite energy and test these on various examples.

We then study complex Monge-Ampere equations on quasi-projective

ix



X Introduction

varieties. In particular we consider a compact Kéhler manifold X, D C X a
divisor and we look at the equation

(@ + ddp)" = fur

where f is smooth outside D and with a precise behavior near the divisor.
We prove that the unique normalized solution ¢ is smooth outside D and we
are able to describe its asymptotic behavior near D (joint work with Hoang
Chinh Lu). The solution is clearly not bounded in general and thus the
idea is to find a convenient “model” function (a priori singular) bounding
from below the solution. To do so we introduce generalized Monge-Ampere
capacities, and use them following Kolodziej’s approach [Kol98] who deals
with globally bounded potentials.

These capacities, which generalize the Bedford-Taylor Monge-Ampere
capacity, turn out to be the key point when investigating the existence and
the regularity of solutions of complex Monge-Ampere equations of type

MA (p) = M fu", AeR

where f has divisorial singularities.

We also treat some cases when f is not in L', an important issue for the
existence of singular Kéhler-Einstein metrics on general type varieties with
log-canonical singularities [BG13].



Chapter 1

Preliminaries and
presentation of the results

1.1 Big cohomology classes

1.1.1 Positive Currents

Consider a real oriented manifold M of dimension m. Recall that a current
T of dimension ¢ (or degree m — q) on M is a continuous linear form on the
vector space D4(X) of smooth differential forms of degree ¢ with compact

support. We denote by Dy (M) (or D™ Y(M)) the space of currents of
dimension ¢ on X, and by (T, u) the pairing between a test g-form u and a
current 1" of dimension ¢. A first example of a current of dimension ¢ is the
current of integration over a closed oriented submanifold Z of dimension ¢
and of class C!, which is denoted by [Z] and defined as

(2], u) := /Zu

Observe that, given f a g-form with coefficients in Lllo (M), we can associate
the current Ty of dimension m — ¢ (and degree ¢) defined as follows:

(T, ) = /Mf/\u.

Given a current T of degree ¢, the wedge product of T" with a smooth p-form
v is defined as

(T ANv,u) == (T,v Au).

One can also define the exterior derivative dT" as the (¢ + 1)-current satisfying
(dT,u) == (—1)9TYT, du).

1



2 Preliminaries and presentation of the results

A current T' is then said to be closed if dT' = 0. We denote by {T'} the
cohomology class defined by the current 7. By deRham’s Theorem, the
corresponding cohomology vector space

H™™ (M) := {closed currents of degree ¢} /{dS | S current of degreeq — 1}

is isomorphic to the one defined using closed smooth differential forms.

Let now X be a complex manifold of complex dimension n. The decom-
position of complex valued differential forms according to their bidegrees
induces a decomposition at the level of currents. We say that a current T’
is of bidegree (p, q) if it is of degree p 4+ ¢ and (T, u) = 0 for any test form
u of bidegree (k,1) # (n — p,n — q). We denote by D'"?(X) the space of
such currents, and by HP4(X) the corresponding vector space of cohomology
classes.

In the complex case one can define a notion of positivity at the level of
forms and currents. Let V be a complex vector space of dimension n and
(21, ..., zn) coordinates on V. Observe that V has a canonical orientation
defined by the volume form

(idzy Ndzy) A ... A (idzy A dZy,)

and a (n,n)-form on V is said to be positive if and only if it is a positive
multiple of the orientation form. A (p,p)-form w is said to be positive if for
all aj € V*, 1 <5 <n —p, we have that

u A (tog Aar) A A (iap—p A Gn—p)

is a positive (n,n)-form. Equivalently, a form of bidegree (p,p) is positive if
and only if its restriction to every p-dimensional subspace S C V is a positive
volume form on S.

The set of positive (p, p)-forms is a closed convex cone in APP V* and its
dual cone in A""P""PV* is the strongly positive cone. A strongly positive
(¢, q)-form v is a convex combination of forms of type

(icr A ) A= A (g A dy)

with a; € V*, for j = 1,---,q. Of course, we are interested in the case
V =T,X. In this way, we are able to define, at each x € X, a notion of pos-
itivity for smooth forms on X, and so we can then give a notion of positivity
for currents. A current 7" of bidimension (p, p) is positive if (T, u) > 0 for all
strongly positive test forms u € DPP(X).

Two extreme examples of closed positive currents are currents of inte-
gration along analytic subsets of dimension p and positive smooth closed
differential forms of bidegree (n — p,n — p).
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Let T be a positive closed current of bidegree (1, 1) on a compact manifold
X. Then T is locally given as T' = dd®p where ¢ is a plurisubharmonic (psh
for short) function. This cannot hold globally since the maximum principle
insures that the only psh functions on X are the constants. On the other
hand, given 6 a smooth representative of {T'}, one can ask whether 7' — 0
(which is d-exact) is also dd-exact. This is true in the Kéhler setting:

Lemma 1.1.1 (90-Lemma). Let X be a compact Kdhler manifold. Let S
be a current which is both O and 0-closed. Then S is d-exact if and only if
is dd®-exact.

We refer the reader to [Voi07, Proposition 6.17] for a proof of the 90-Lemma
and to [Dem09] for more details about the notion of positive currents.

Consider now o € H!'(X,R) a cohomology class which can be repre-
sented by a positive closed current (such a class is called pseudoeffective).
Fix 6 a smooth representative of a. If X is Kéhler, then any closed positive
current of bidegree (1,1) in a can be written as

T =0+ dd°p

for some upper semi-continuous function ¢ : X — R U {—oo}, which is
uniquely determined up to an additive constant. Such functions are called
f-plurisubharmonic.

1.1.2 Quasi-plurisubharmonic functions

In this section we introduce the first basic properties of quasi-plurisubhar-
monic functions ([GZ05]). These are functions which are locally given as
the sum of a smooth and a plurisubharmonic function. It follows from
the maximum principle that on a compact manifold X, there are no global
plurisubharmonic functions but the constants. However there is plenty of
quasi-plurisubharmonic (gpsh for short) functions.

When (X, w) is compact Kéhler, any qpsh function ¢ is Aw-psh for some
A > 0 large enough, i.e. Aw+ddp > 0 in the weak sense of currents. Indeed,
dd¢yp is bounded from below by a smooth form, which is itself bounded from
below by —Aw, A > 0 large enough. By rescaling, one can assume A = 1.
For this reason, here we restrict to consider w-plurisubharmonic functions.

Definition 1.1.2. We let PSH(X,w) denote the set of w-plurisubharmonic
functions, i.e. the set of functions ¢ € L'(X,R U {—occ}) which write locally
as the sum of a smooth and a plurisubharmonic function, and such that

w4+ ddp >0

in the weak sense of positive currents.
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If w: X — R is a function of class C?, then dd®u is bounded from below
by —Aw for some A > 0 large enough (which depends linearly on ||u|/c2). Up
to rescaling, this shows that any smooth function is w-plurisubharmonic. The
set PSH(X,w) also contains singular functions. The local model of singular
behavior is that of plurisubharmonic functions, but the w-psh condition also
encodes global information which limitates the possible type of singularities.

Quasi-plurisubharmonic functions have interesting compactness proper-
ties that are straighforward consequences of the analogous local results for
sequences of psh functions.

Proposition 1.1.3. Let (p;) € PSH(X,w)N.

1) If (¢j) is uniformly bounded from above on X, then either p; converges
uniformly to —oo on X, or the sequence (p;) is relatively compact in
LY(X).

2) If ¢; — ¢ in L} (X), then ¢ coincides almost everywhere with a unique
function ¢* € PSH(X,w). Moreover

lim sup p;(x) < ¢*(z),

Jj—+oo

with equality holding outside a pluripolar set, and

lim sup p; = sup ¢*.
J—+oo x X
3) In particular if ¢; is decreasing, then either p; — —o0 or ¢ = limg; €
PSH(X;w). Similarly, if ¢; is increasing and uniformly bounded from
above then ¢ := (lim¢;)* € PSH(X,w), where * denotes the uppersemi-
continuous reqularization.

4) If ; — ¢ in the weak sense of distributions, then ¢ coincides almost
everywhere with a unique function ¢* € PSH(X,w) and ¢; — ¢*
in LP(X) for any p > 1. Moreover the sequence ¢; := (sup;>; ¢1)*
decreases to p*.

We refer the reader to [Dem09], chapter 1, for a proof. Note that 2) is a
special case of Hartogs’ lemma.

It is easy to approximate a given w-psh function ¢ by a decreasing
sequence of less singular w-psh functions. One can for example consider
op = —(—p)P, where 0 < p < 1 and ¢ is assumed to be normalized so
that ¢ < —1. Letting p increase to 1 yields a decreasing family of w-psh
functions which are less singular. One can also approximate ¢ by a sequence
of bounded w-psh functions ¢; := max(y; —j). It is more delicate to find a
decreasing sequence of smooth w-psh approximants ([Dem92, BK07]):

Proposition 1.1.4. Fix ¢ € PSH(X,w). Then there exists smooth w-psh
functions ¢; € PSH(X,w) N C>®(X) which decrease towards ¢.
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We recall that quasi-psh functions are in LP(X) for every p > 1. A much
more powerful integrability result, due to Skoda [Sko72], actually holds.

Theorem 1.1.5. Fiz ¢ € PSH(X,w) and A < 2[sup,cx v(p,2)]7L. Then
exp(—Ayp) € LY(X). Moreover if A < 2v({w}), then

sup {/ e %4V | ¢ € PSH(X,w) and sup ¢ = 0} < 400
X X
We recall that the Lelong number of ¢ at a given point z € X is

— Jiminf — P&
v(p,x) = llgglilf o 1z — 7]
and
v({w}) :==sup{r(p,z) | x € X and ¢ € PSH(X,w)}.

One can check that v({w}) is finite and only depends on the cohomology
class of w.

1.1.3 Positivity of cohomology classes

Let (X,w) be a compact K&hler manifold. We introduce different no-
tions of positivity for cohomology classes corresponding to convex cones
in HY1(X,R).

Definition 1.1.6. Let o € H"!'(X,R). Then

(i) «a is a pseudoeffective class if and only if there exists a positive closed
(1,1)-current T representing c.

(ii) «is a nef class (numerically effective) if and only if for all € > 0, there
exists a smooth and closed (1, 1)-form 6. € a sucht that 6. > —cw.

(iii) « is a big class if and only if it can be represented by a Kéhler current,
i.e. a closed (1,1)-current T such that T'> ew for £ > 0 small.

(iv) « is a Kahler class if and only if can be represented by a Kéhler form,
i.e. a smooth and closed (1, 1)-form which is positive definite.

Clearly, such notions do not depend on the choice of the Kéhler form w
since two Kéahler forms are comparable.

The set of Kéhler classes is an open convex cone K C H%' (X, R), the
Kdahler cone. Analogously, we can consider the nef cone N which is convex
and closed, B the big cone which is convex and open and the pseudoeffective
cone £, convex and closed. Furthermore, the following inclusions hold:

KcNcE and KCBCE,

with K = N and B =& , where ° denotes the interior.
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Example 1.1.7. Let 7 : X — P? be the blow-up at one point p and
E = 771(p) be the exceptional divisor. Then it is known that

H*(X) = m*H*(P*) @ H*(E).

In particular, this means that H'!(X,R) is generated by a{m*wrs} + b{F}
where a,b € R. The Kéhler cone of X consists of all real (1, 1)-cohomology
classes a which are numerically positive on analytic cycles, i.e. such that
[y &P > 0 for every irreducible p-dimensional analytic set Y in X, ([DP04,
Corollary 0.2]). Tt suffices to test this criterion with Y = Fand Y =P! C X
where P! intersects at most once the exceptional divisor E. We then get that

K={a>0b<0|a>—b}

and thus
N={a>0,b<0|a>—b}.

Simply using the definition of the big cone we obtain
B={a>0,beR|a> b}

and therefore
E={a>0,beR|a>—b}.

A compact complex manifold is Kéhler iff its Kédhler cone K is not empty.
Given (Y,w) a compact Kéhler manifold and a modification f : X — Y with
smooth center, although f*w is not a Kéahler form, X is a Kahler manifold:

Lemma 1.1.8. Let 7 : X — Y be the blow up of Y with smooth connected
center Z and E be the exceptional divisor. Assume w is a Kdahler form on
Y. Then {r*w} — e{E} is a Kdhler class on X, for every 0 < e < 1.

We refer the reader to [Bla56, Theorem II.6].

1.1.4 Push-forward and Pull back

Let f : X — Y be a holomorphic map between two compact Kéahler manifolds.
One can push-forward a current S on X by duality (since the pull-back of a
smooth differential form on Y is well defined), setting

(feSym) = (S, f*n).

Observe that the push-forward preserves positivity, closedness and bidegree.
In general, given a current T on Y, it is not possible to define its pull-
back by a holomorphic map. On the other hand, it is possible to pull-back
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positive closed currents of bidegree (1,1). Indeed, such a current writes as
T = 0 + dd°p, where § € {T'} is a smooth form, and thus one can set

T := f*0+dd°po f.

Clearly f*T is a globally well defined current of bidegree (1,1) on X which
is closed and positive.

Moreover, we can define as well the push-forward and the pull-back of pos-
itive closed (1, 1)-currents by a bimeromorphic map since any bimeromorphic
map f: X —— >Y can be decomposed as

r
RN
X Y
where 71, o are two holomorphic and bimeromorphic maps and I' denotes a
desingularization of the graph of f.

Proposition 1.1.9. Let X and Y be compact Kdhler manifolds and let
m: X =Y be the blow up of Y with smooth connected center Z. Then

1) given any positive closed (1,1)-current S on X, there exists a positive
closed (1,1)-current T on'Y such that

S =T 4 ~[E]
where E is the exceptional divisor and v > —v(T,Z2), v(T,Z) =

infoez v(T,2). In particular given ax € HY'(X,R), we have the
following decomposition at the level of cohomology classes

ax = mmeax +v{E}

2) given any closed (1,1)-current T on'Y and v € R, the (1,1)-current
S . 7T + ~y[E] is positive if and only if v > —v(T, Z).

Observe that the coefficient v does not depend on the positive current S
but only on its cohomology class.

We refer to [Dem09, Proposition 8.16, Corollary 2.14] and [Bou02a,
Corollary 1.1.8] for a proof.

We are also interested in pushing-forward measures by holomorphic
surjective maps. Let u be a probability measure on X, then

far = /X O f(a)dp(a).

In other words fuu(E) = u(f~'(E)) for every Borel subset £ C Y. The
measure f,u is a well defined probability measure.

We will say that a positive measure is non-pluripolar if it puts not mass
on pluripolar sets. It is easy to check that such a property is preserved under
push-forward.



8 Preliminaries and presentation of the results

1.2 Finite energy currents

1.2.1 Volume of big classes

Fix o € H, bli’gl(X ,R) and # a smooth representative in . Consider the #-psh
function

Vo :=sup{¢|p € PSH(X,0) ¢ <0 on X}.

Observe that if « is a Kéahler or a semipositive class, then Vp is bounded but
this is not the case in general, if the class is merely big. On the other hand,
by Demailly’s regularization theorem [Dem92]| it follows that there exists a
Zariski open set {2 C X on which Vj is locally bounded.

Moreover, we say that a positive (1, 1)-current Tiin = 0 + ddPmin in «
has minimal singularities if |omin — Vp| is globally bounded.

We can then introduce

Definition 1.2.1. Let Ty, be a current with minimal singularities in .
The positive number

vol(a) := / i (1.2.1)
Q
is called the volume of «.

Note that the Monge-Ampére measure of Ty, i.e. the top wedge product
of Thin is well defined in €2 thanks to Bedford and Taylor [BT87] and that
the volume defined in (1.2.1) is independent of the choice of Ty € a (see
[BEGZ10, Theorem 1.16]) and of the choice of €.

Volumes are invariant under modification between two Kéhler manifolds
but are not preserved in the case of push-forwards.

We recall that if « is a nef cohomology class then vol(a) = ™. This is
not true when « is big but not nef.

Example 1.2.2. Consider 7 : X — P? the blow-up at one point and take
a =1 {wrs} + {E£}. In this case, it turns out that a current of minimal
singularities in « is of the type Tiin = 7" Smin + [E] where Spin is with
minimal singularities in {wrg}. In particular, Vjy locally writes as the sum
of a bounded potential and log|z| where we choose local coordinates on X
such that £ = {x = 0}. Then vol(a) = 1 whereas a? = 0.

1.2.2 The non-pluripolar product

Following Bedford and Taylor (see [BT87]), in [BEGZ10] the authors have
introduced the non-pluripolar products of globally defined currents which is
always well-defined on a compact Kahler manifold.

Fix a a big cohomology class on X. Given T a closed positive (1,1)-
current in «, we fix § € o a smooth form and we write " = 8+4dd°p. Consider
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now the “canonical approximants”

pj = max(p, Vo — j).

Then the sequence of Borel measures

1iosv,—jyna(l + ddp;)"

is non-decreasing and converges towards the so called non pluripolar product
(0 + dde)").

Since by construction the non-pluripolar product does not put mass on
pluripolar sets (and in particular on analytic sets), we have

vol(a) = /X (T™. ). (1.2.2)

Observe that the total mass of the non-pluripolar measure (1) is less or
equal to vol(a).

Definition 1.2.3. We say that T has full Monge-Ampére mass if

/X (T™) = vol(a)

and we denote by £(X, ) the set of positive currents in o with full Monge-
Ampere mass. We let £(X, ) denote the set of #-psh functions such that
T=0+ddp € £(X,a).

Such currents have mild singularities in the ample locus Amp («), in
particular they have zero Lelong number at every point z € Amp («).
We recall that the ample locus of « is the set of points € X such that
there exists a strictly positive current T' € a with analytic singularities and
smooth around z.

Similarly, we define weighted energy classes
Ex(X,0) = {p € E(X,0) [ x 0 p € L' (((6 + dd°¢)™))}

where x is a weight function. Here, by a weight function, we mean a smooth
increasing function y : R — R such that x(—oc) = —oco and x(t) =t for
t > 0. We denote by &, (X, «) the set of positive currents whose potentials
belong to £, (X, 6).

Example 1.2.4. Assume X = P! and a = {wpg} is normalized such that
vol(a) = 1. A positive closed (1, 1)-current 7' € « is a probability measure
that can be decomposed as T' = Tpoar + Tif fuse Where T4, is the polar
part of the measure (see [R769]). In this case T € £(X, ) is and only if
Tpolar =0.
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1.2.3 Stability of energy classes

We briefly describe in this section the contents of chapter 2. We study
invariance properties of the energy classes £ and &,.

Consider f: X — Y an holomorphic map between two Kahler manifolds
and a big cohomology class 5 on Y, then it essentially follows from a change
of coordinates that £(X, f*8) = f* (E(Y, 5)) and &, (X, f*B) = f* (Ex(Y, 5)),
for any weight function x. One can then wonder what happens if we fix a
big cohomology class a on X and we look at the push-forward of positive
closed (1,1)-currents in . More precisely we wonder wether

fo (X, ) = E(Y, fra)

and

fx (5X(X7 a)) = SX(Y7 frav).

As we explain in what follows, things are more complicated in this case and
we actually get the same type of results for any f : X — — > Y merely
bimeromorphic.

We stress that Kéhler classes are not stable under bimeromorphic maps.
The good objects to work with are big cohomology classes. Indeed, if « is
big, then so are f*«a and fia.

Theorem 1.2.5 (DN13). The non-pluripolar product is a bimeromorphic
mwariant. Gien f: X — — >Y a bimeromorphic map and o a big class,
we have

f*<Tn> = <(f*T)n>

where T € « is a positive (1,1)-current.

In general, finite energy classes are not preserved by bimeromorphic maps.
For example, let 7 : X — P? be the blow-up at one point {p} and E = 7~1(p)
be the exceptional divisor. On P2, we consider the Fubini-Study form wgg
and a positive (1, 1)-current w’ such that locally writes dd®log ||z||. Then
© = (m*w’ — [E]) + m*wpg is a Kahler form and & € 2n*wpg — {E} := a. In
this case

T (E(X, ) # E(P?, T

since @ € £(X, ), but mw = w’' 4+ wrg has positive Lelong number at p, and
thus does not belong to £(P2, m.a).

We introduce a natural condition to overcome this problem. We say that
a big class a on X satisfies Condition (V) if

f« ({positive (1, 1)-currentsin a}) = {positive (1, 1)-currentsin f,a}.
Theorem 1.2.6 (DN13a). Let o € HI}{; (X,R). If Condition (V) holds, then
(i) vol(a) = vol( feax),
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(it) fo (E(X,a)) = EY, fra),
(111) fo (Ex(X,@)) = E (Y, fear), for any weight x.

Observe that in the previous example Condition (V) does not hold since
vol(a) = 3 < vol(m,ar) = 4.

In dimension 2, Condition (V) turns out to be equivalent to the preserva-
tion of volumes. We refer the reader to Section 2.2.2 for more details.

A related question is the stability of energy classes if we change cohomol-
ogy classes on a fixed compact Kéhler manifold X. More precisely, given «
and 3 big classes, we ask wether

Te&(X,a) and S€&(X,) = T+Se&(X,a+p)

and similarly for weighted energy classes &, .
We have observed the following:

Theorem 1.2.7 (DN13b). Let x be a weight function.

(i) If a, 5 are Kdhler classes, then

Te&(X,a)and S € £(X,B) if and only if T+ S € £,(X, a + B).

(ii) If a, B are merely big classes, then

T+ 8 €& (X, a+p) impliesT € E(X, ) and S € E,(X, ).

The same statements hold for the energy class £.
Furthermore, we show that the reverse implication in (ii) is false in
general (see Counterexample 2.3.5).

1.2.4 Finite energy measures

We briefly describe the contents of Chapter 3. There we study the stability
of finite energy measures.

Definition 1.2.8. We say that a probability measure p has finite energy in
a given class a (normalized such that vol(a) = 1) if there exists 7' € £(X, a)
such that

p=(T")
and we write u € MA (£1(X, a)).
Example 1.2.9. When (X, w) is a compact Riemann surface (i.e, n = 1), it

turns out that a probability measure u = w + dd®p has finite energy if and
only if Vi € L*(X).
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This notion was introduced in [BBGZ13] where the authors defined
the electrostatic energy of a probability measure E*(u). An equivalent
formulation of having finite measure is that E*(u) < +oc.

Such pluricomplex energy is a natural analogue of the classical logarithmic
energy of a measure in dimension 1. Recall that, given a probability measure
on C, its logarithmic energy I(u) is defined by

= //log|z—w|d,u(z)du(w) = —/pp(z)dﬂ(z)

where the function p, : C — [—00, 00) is the logarithmic potential defined by

Py = /log|z —wldp(w).

Note that when g has finite energy, p, belongs to L!(du).

When X = P! and wpg is the Fubini-Study form, it turns out that a
given probability measure p on C C P! is such that E*(u) < +oo if and only
if 4 has finite logarithmic energy and in that case we have

1
—I(p— wrs).

E(w) = 5

We show that the notion of having finite measure is invariant by biholo-
morphisms but not by bimeromorphic maps.

Proposition 1.2.10 (DN14). Let o, 8 be Kdéhler classes. Then
1€ MA (EY(X,a)) <= pu € MA (£1(X, B)).

The previous statement is false for big classes. Consider 7 : X — P? the
blow-up at one point. We show that there exists a probability measure pu
and a Kéhler class {&} on X such that

peMA (ENX,{@})) and p¢MA (EY(X, {m*wrs})).

1.3 Kahler-Einstein metrics

1.3.1 The Calabi conjecture

Let X be an n-dimensional compact Kéhler manifold and fix w an arbitrary
Kahler form. If we write locally

) _
= - Zwagdza A dZﬁ,

then the Ricci form of w is (locally)

02 log(det wpq) B
Ric(w) == —— Z 02007 dzo N dzg.
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Observe that Ric(w) is a closed (1,1)-form on X such that for any other
Kahler form w’ on X, the following holds globally:

m

Ric(w') = Ric(w) — dd€log t:—n

Here d = 9 + 0 and d° = 5—(0 — 9) are both real operators. In particular
Ric(w’) and Ric(w) represent the same cohomology class, which turns out to
be ¢1(X). Conversely, given 7 a closed differential form representing ¢q (X),
Calabi asked in [Cal57] whether one can find a Kéahler form w such that

Ric(w) = 7.

He showed that if the answer is positive, then the solution is unique and
proposed a continuity method to prove the existence. This problem, known
as the Calabi conjecture, remained open for two decades. This result was
finally solved by Yau in [Yau78] and is now known as the Calabi-Yau theorem.

The Calabi conjecture reduces to solving a complex Monge-Ampere
equation as we can see here below. Fix a € H%'(X, R) a Kihler class, w a
Kéhler form in @ and n € ¢1(X) a smooth form. Since Ric(w) also represents
c1(X), it follows from the d0-lemma that there exists h € C*°(X,R) such
that

Ric(w) = n + ddh.

We now seek for wy, := w+dd®p a new Kahler form in a such that Ric(w,) = 7.
Since

Ric(wy,) = Ric(w) — ddlog <w¢;> ,
w

the equation Ric(w,) = 7 is equivalent to

ddc{h—log <°"@n)} =0
w

The function inside the brackets is pluriharmonic, hence constant since X
is compact. Shifting initially h by a constant, our problem is equivalent to
solving the complex Monge-Ampere equation

(w4 dd¢p)™ = elw™. (CY)

Note that h necessarily satisfies the normalizing condition

/ehw":/w":V.
X X

Theorem 1.3.1 (Yau78). The equation (CY) admits a unique (up to con-
stant) solution ¢ € C*°(X,R) such that w, is a Kéhler form.
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1.3.2 The Kahler-Einstein equation

The following metrics are objects of a great interest:

Definition 1.3.2. A Kahler metric w is Kahler-Einstein if there exists A € R
such that
Ric(w) = Aw.

The existence of Kéahler-Einstein metrics is one of the fundamental
problems in complex geometry. It is easy to see that there exists obstructions
to the existence of such metrics. Indeed, since {Ric(w)} = ¢1(X), looking for
a Kéhler metric w such that Ric(w) = Aw requires ¢1(X) to have a definite
sign (the one of \). This is always the case in dimension n = 1, but not
necessarily so in dimension n > 2. For example, when X = S; x S5 is the
product of two compact Riemann surfaces, then ¢;(X) is proportional to a
Kahler class iff S and S5 are of the same type.

We recall that if ¢1(X) = ¢1(Kx') = —c1(Kx) has a sign (non zero) then
Kodaira’s embedding theorem insures that the compact Kéahler manifold X
is actually projective.

Note that Ric(ew) = Ric(w) for any € > 0, and hence there are essentially
three cases to be considered, A € {—1,0,1}.

Fix A € R such that M{w} = ¢;(X) and h € C*°(X,R) such that

Ric(w) = Aw + ddh.

We now seck for a Kéhler form w, = w + dd°p such that Ric(w,) = Aw,,.
Arguing as before we can reduce our problem to solving the complex Monge-
Ampere equation

(w4 ddSp)™ = e 2 Thyn, (MA))

One can always solve (MA)) when A < 0, (X is then of general type),
(Aubin-Yau theorem [Aub76, Yau78|) and when A\ = 0 (the Calabi-Yau theo-
rem [Yau78]). The solution is moreover (essentially) unique.

The situation is much more complicated when A > 0: this is the case
when X is a Fano manifold.

A compact complex manifold is called Fano if the anticanonical bundle
K)_(l is ample. Note that these are necessarily projective algebraic.

The only Fano Riemann surface is the Riemann sphere P!, If X is a
2-dimensional Fano manifold, then it is isomorphic to either P! x P! or P?
blown up at r points in general position, 0 < r < 8. Fano manifolds of
dimension two are called DelPezzo surfaces. Fano manifolds have also been
classified in dimension 3 and there are 105 families. There are finitely many
families in any dimension, but this number is becoming very large with n.

When X is Fano (A > 0) there are obstructions to the existence of Kéhler-
Einstein metrics (e.g. the Futaki invariant has to vanish identically), and
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the solutions, when they exist, are moreover not unique (Bando-Mabuchi’s
theorem [BMS87]).

Theorem 1.3.3 (BM87). Let X be a Fano manifold and assume wgy,w; are
Kdhler-Einstein metrics. Then there exists V € H°(X,TX), a holomorphic
vector field whose flow ¢; connects wy to w1 = d1wyp-

An important work of Tian [Tia90] settles the situation in dimension 2:

Theorem 1.3.4 (Tian90). A smooth DelPezzo surface admits a Kdhler-
Finstein metric unless it is biholomorphic to P? blown-up at one or two
points.

The situation in higher dimension (n > 3) has been an open problem until
recently. It was conjectured for some time that the non-vanishing of the Futaki
invariant was the only obstruction to the non-existence of a Kéahler-Einstein
metric. Some counter-examples were however produced by Tian in the 90’s. It
has been conjectured by Yau that a Fano manifold admits a Kéhler-Einstein
metric if and only if it is “stable” in some algebro-geometric sense. The
conjecture was later on refined by Tian and Donaldson who extended it to the
context of constant scalar curvature metrics. This conjecture has been solved
by Chen, Donaldson, Sun [CDS12a, CDS12b, CDS13| and Tian [Tial2] who
proved the existence of Kéahler-Einsten metrics on a Fano manifold if and
only if the manifold is K-stable.

1.3.3 Continuity method

The continuity method is a classical tool to try and solve non linear PDE’s.
It consists in deforming the PDE of interest into a simpler one for which one
already knows the existence of a solution. The following path of equations
was proposed by Aubin

(w4 ddpy)" = e~ Mprtthy,n (MA,)

where 0 <t <1 and ¢ € PSH(X,w). The equation of interest corresponds
to t = 1 while (MA)( admits the obvious solution ¢y = 0.

The goal is then to show that the set S C [0, 1] of parameters for which
there is a (smooth) solution is both open and closed in [0, 1] and since [0, 1]
is connected and 0 € S, it will then follow that S = [0,1] hence 1 € S.

The openness follows by linearizing the equation (this involves the Laplace
operator associated to w, = w+dd‘p) and using the implicit function theorem.
Although it is not completely trivial this is not the most difficult part.

One then needs to establish various a priori estimates to show that S
is closed. Indeed, if we consider a sequence of smooth solutions ¢y, as
t =t € (0, 1], we want to extract a subsequence t;, such that ¢y, converges
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uniformly with all its derivatives to a function ¢;__ solution of (MA),. By
Ascoli’s thorem, it suffices to obtain a priori estimates of the type

letller < Ck

where C}, is a positive constant that depends only on k (it does not depend
on t).

Observe that the previous arguments hold for all A € R. It is at the level
of CO-estimates that the sign of A plays a crucial role. In the case of negative
curvature (A < 0) a simple application of the maximum principle allows
to conclude. When A = 0, the situation is much more complicated: the
C¥-estimates in this case are due to Yau and the approach relies on Moser’s
iterative process. After the celebrated paper of Yau [YauT78|, Kolodziej
[Ko198] generalized the C a priori estimates using pluripotential tools. His
uniform estimate can indeed be applied to complex Monge-Ampere equations
of the type

(w+ ddp) = fdV

where 0 < f € LP(dV') for some p > 1.

Kotodziej’s idea is to show that the Monge-Ampere capacity of sublevel
sets (¢ < —t) vanishes if ¢ > 0 is large enough, by a clever use of the
comparison principle.

Using Kotodziej’s method the regularity theory was also extended to the
case when the reference cohomology class is non Kéhler [EGZ09, BEGZ10].

Finally, in the case of positive curvature, such estimates do not exist in
general and the continuity method stops at t,, < 1.

We assume from now on A < 0. Once one has in hands C%-estimates, one
needs higher order estimates. The first step is to obtain a laplacian estimate,
in other words we want to show

C7lw < w+ddp; < Cw

for some constant C > 0 that is independent of . Then, thanks to Evans-
Krylov theory, we can deduce an estimate of type C*® and this suffices to
apply Schauder’s theorems and a bootstrap argument.

1.4 More Monge-Ampere equations
We briefly describe in this section the contents of Chapters 4 and 5.

1.4.1 The quasi-projective setting

The second part of this thesis is devoted to study complex Monge-Ampere
equations on complex quasi-projective varieties. More specifically, we consider
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D C X a divisor in our compact Kéahler manifold and we look at complex
Monge-Ampére equations of the type

(w+dd°p)" = fuw" (1.4.1)

where the density 0 < f € C*(X \ D).

Observe that if f € C°°(X) then the solution ¢ is also smooth on X,
thanks to Yau’s result.

One can try and study the regularity of the solution ¢ and its asymptotic
behavior near D. We recall that the existence and the uniqueness of a weak
solution of (1.4.1) follow from a general theory developed in the last years
([GZ07, Din09]).

The main result in the paper [DNL14a] in collaboration with Hoang
Chinh Lu is the following:

Theorem 1.4.1 (DN-Lul4). Assume 0 < f € C>*°(X \ D). If moreover
f= e’ﬁ*w_, where * are quasi-plurisubharmonic functions and ¥~ €
LY (X \ D), then there exists a unique (up to an additive constant) solution
@ of (1.4.1) which is smooth in X \ D.

The strategy of the proof is to use Demailly’s regularization theorem to
approximate ¥* by smooth qpsh functions )= on X. By Yau’s theorem we
know that there exists ¢, € C°°(X) unique solution of

(w + ddc(ps)n _ Cse’l/lg_—"l)e_wn

with the normalization supy ¢ = 0. Here ¢ > 0 is a normalization constant
such that the compability condition holds, i.e.

+7 —
/cgewf Ve w"—/ w"”.
X X

The first step is a uniform CC-estimate (see Section 1.4.2 for a detailed
explanation of this crucial step). Once we have it in hands we are able to
get the laplacian estimate

Aw@s < A6_2¢_7

where A is a positive constant depending only on | % e~ C%wm, C > 0. Let us
stress that, since ¢ € £(X,w), such an integral is finite for any C' > 0 thanks
to Skoda’s theorem.

As we have already explained, laplacian estimates and the ellipticity
of Monge-Ampeére operator allow to obtain higher order estimates for any
compact subset K C X \ D,

[@ellor.s (K) < Ckap

for any k > 2, g € (0,1).
As in the “classical” case, the C?-estimate is the most difficult one. We
state here a general result that covers in particular the previous setting:
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Theorem 1.4.2 (DN-Lul4). Assume f < e~% where ¢ is a quasi-psh func-
tion. Let ¢ be the unique solution of (1.4.1) with supy ¢ < 0. Then for any
a > 0 such that ap € PSH(X,w/2), there exists A > 0 depending only on
[y e %/%W™ such that

w > ap — A.

Observe that at this level, no regularity assumptions on the density f
are required.

1.4.2 Monge-Ampere capacities

In order to give an idea of the proof of Theorem 1.4.2, we start explain-
ing Kotodziej’s techniques from pluripotential theory. The Monge-Ampere
capacity of any Borel set £ C X is

Cap,,(E) := sup {/ (w4 ddu)" |ue PSH(X,w) —1<u< 0} :
E

The capacity Cap,, is comparable to the classical Monge-Ampere capacity of
Bedford and Taylor and characterizes pluripolar sets. In Kolodziej’s approach
the idea is to prove that the function H(t) := Cap,({¢ < —t})'/" satisfies

sH(t+s) < CH(t)?, Vt>0,s€(0,1) (1.4.2)

where C' > 0 is a uniform constant. Such an inequality allows to deduce that
there exists to, > 0 such that

Cap,({¢ < —t}) =0, Vit > too

and therefore there exists A > 0 such that ¢ > —A. Hence ¢ is globally
bounded.

In our case the solution is not bounded and therefore a natural idea is to
bound the solution from below by a singular “model” qpsh function. This is
the reason why in the works with Lu [DNL14a, DNL14b], we have introduced
and studied generalized Monge-Ampére capacities, for example of type

Cap,,(E) ::sup{/E(w—Fddcu)”\w—lgugw}, VE C X

where 1 is a w/2-psh function that can be singular.
The goal is, once again, to prove an inequality as in (1.4.2) where now

H(t) := Capy({p < ¢ — t}) /",
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1.4.3 Behavior near a divisor

It is natural for various geometric reasons to look at complex Monge-Ampeére
equations as in (1.4.1) where the density in the right side is smooth outside
a divisor D C X.

As a particular case consider complete metrics in X \ D of Poincaré type,
namely when the density

_ h
sp|*(—log|sp|)?

with h € C°(X \ D). In a recent work Auvray [Auvll] has proved an
interesting result: he assumes h to have a very precise asymptotic behavior
and regularity and shows that the solution ¢ looks like —log(—log|spl).
Our C%-estimate works in this case just applying Theorem 1.4.2 with ¢ =
2log|sp| (actually we can get even better bounds of the solution, see Section
4.3.2 and Proposition 4.3.5).

We can treat as well densities f such that

B

<
LS P logspn e

where B, > 0. As in the case of the Poincaré metric, in these special cases
we are able to say more about the behavior of .

Kotodziej’s result covers the case of such densities when a > n proving
that the solution ¢ is globally bounded. With our method we can improve
Kolodziej’s result and show that ¢ is globally bounded when a > 1.

Moreover, if o < 1 we prove that the solution is not bounded and we
are able to give a precise lower bound: if a < 1, for each ¢ € (1 — a,1)
we have ¢ > —(—log|spl|)? — C; furthermore if @« = 1 and D is smooth,

¢ > —log(—log|spl) — C.

f

1.4.4 Non integrable densities

Berman and Guenancia [BG13] have studied the existence of singular Kéhler-
Einstein metrics on general type varieties with log-canonical singularities.

We recall that singular varieties with log-canonical singularities naturally
appear in the compactification of moduli space of non-singular projective
algebraic varieties with ample canonical bundle. Such a problem is related
to the Minimal Model Program in birational geometry.

Berman and Guenancia’s problem reduces to a complex Monge-Ampeére
equation of the type

MA (¢) = e?fdV (1.4.3)

where f ~ ﬁ and sp is a holomorphic section defining the divisor D.
In Chapter 5 we also look at Monge-Ampere equations of the type

(w4 ddp)" = e? fw". (1.4.4)
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When 0 < f ¢ L'(X) it is not clear that we can find a solution ¢ €
E(X,w) of equation (1.4.4). Using our generalized Monge-Ampeére capacities,
we show that it suffices to find a subsolution. Furtheremore, in the same
spirit of what we have done in Chapter 4, if the density f is smooth outside a

divisor D, we provide the regularity of a solution (whenever it exists) outside
D.

Theorem 1.4.3 (DN-Lul4). Let 0 < f be a measurable function such that
Jx fw™ = 4o0. If there exists u € E(X,w) such that MA (u) > e fw™ then
there is a unique ¢ € £(X,w) such that

MA (p) = e? fw".

Moreover, if 0 < f € C*(X \ D) and f = e V7 where ¥E are quasi-
plurisubharmonic functions and 1~ € LS (X \ D), then ¢ is smooth on
X\ D.

Observe that if f = ﬁ then there exists suitable positive constants

C1, Cy such that the function ¢ = —2log(—log|sp|+C1)—C3 is a subsolution
of MA (¢) = ﬁw” (see Examples 5.3.7 and 5.3.9). Our result thus covers
such cases.



Chapter 2

Stability of Monge-Ampere
energy classes

Introduction

Let X be a compact n-dimensional Kéahler manifold, T} = 61 +ddyp1, ..., T, =
0p + dd®p, be closed positive (1, 1)-currents and 01 + ddVy,, ..., 0, + dd°Vjp,
be canonical currents with minimal singularities. Following the construction
of Bedford-Taylor [BT87] in the local setting, it has been shown in [BEGZ10)]
that

1ﬂj{¢j>Vej _i} (01 + dd“ max(p1, Vo, — k) A ... A (0p + dd° max(pp, Ve, — k))
is non-decreasing in k and converge to the so called non-pluripolar product
(Ti A ... NT).

The resulting positive (p, p)-current does not charge pluripolar sets and it is
always well-defined and closed.

Given « a big cohomology class, a positive closed (1, 1)-current 7" € « is
said to have full Monge-Ampére mass if

/X (T = vol(a)

and we then write T' € £(X, «). In [BEGZ10] the authors define also weighted
energy functionals E, (for any weight x) in the general context of a big class
extending the case of a Kéahler class ([GZ07]). The space of currents with
finite weighted energy is denoted by &, (X, cv).

The aim of the present paper is to show the invariance of the non-
pluripolar product and establish stability properties of energy classes.

Theorem A. The non-pluripolar product is a bimeromorphic invariant.
More precisely, fix a € H"'(X,R) a big class and f : X — — > Y a
bimeromorphic map, then

21
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1) fiolT™) = ((fT)™) for any positive closed T' € «.
Furthermore if f, (7;()()) = Tf.o(Y) then

2) [(E(X,a)) =E(Y, fua);
3) fulEy(X,a)) = E(Y, fea) for any weigth x € W™ U W,,.

Here 7,(X) denotes the set of all positive and closed currents in the big
class o and Ty,o(Y') is the set of all positive closed currents in the image class.
The Condition on the image of positive currents insures that the push-forward
of a current with minimal singularities is still with minimal singularities: this
easily implies that the volumes are preserved, i.e. vol(a) = vol(f.a). We
show conversely in Propostion 2.2.5 that the condition f, <7;(X )) =Tta(Y)
is equivalent to vol(a) = vol(fia) in complex dimension 2, by using the
existence of Zariski decompositions.

A related problem is to understand what happens to the energy classes

if we change cohomology classes on a fixed compact Kahler manifold. Let

a, B be big cohomology classes. Given T' € 7,(X) and S € T3(X) so that
T+ S € Tarp(X), we wonder whether

Te&(X,a) and Se€&(X,B) = T+Se&(X,a+p)

It turns out that T+ S € &(X,a + ) implies T € &,(X, ) and
S € £(X,B) in a very general context (Proposition 2.3.1) but the reverse
implication is false in general (see Counterexamples 2.3.5 and 2.3.7). We
obtain a positive answer under restrictive conditions on the cohomology
classes (see Propositions 2.3.3 and 2.4.8).

Theorem B. Let «, 3 be merely big classes, T € To(X), S € T3(X) and
XEW U W]t[ Then

1) T+Seé&(X,a+ ) implies T € £(X,a) and S € £(X, B),

2) T+ Se&(X,a+ ) implies T € £, (X, o) and S € & (X, ).
If , B are Kéhler, conversely

3) Te&(X,a)and S € £(X,B) implies T + S € E(X,a+ f),

4) T € &(X,a) and S € & (X, B) implies T+ 5 € & (X, o + ).

Proposition C. Assume that S € 5 has bounded local potentials and that
the sum of currents with minimal singularities in o and in 3 is still with
minimal singularities. If p > n? — 1 then

Teél(X,a) =T+ Se€l(X,a+p),

where 0 < ¢ <p—n?+1.
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We stress that the condition on the sum of currents having minimal singular-
ities is not always satisfied as noticed in Remark 2.3.8, but it is a necessary
condition if we want the positive intersection class (« - 3) to be multi-linear
(see [BEGZ10]). In our proof of Proposition C we establish a comparison
result of capacities which is of independent interest:

Theorem D. Let o be a big class and 5 be a semipositive class. We assume
that the sum of currents with minimal singularities in o and g is still with
minimal singularities. Then, for any Borel set K C X, there exist C > 0
such that
1
C
where 04 min = 0o + ddVy,, .

3=

Capea,min (K) S Ca’pga+ﬁ,min (K) S C (Capea,min (K))

Let us now describe the contents of the article. We first introduce some
basic notions such as currents with minimal singularities and finite energy
classes and we recall more or less known facts, e.g. that currents with full
Monge-Ampere mass have zero Lelong number on a Zariski open set (Propo-
sition 2.1.9).

In Section 2.2, we show that the non-pluripolar product is a bimeromor-
phic invariant (Theorem 2.2.1). Furthermore, under a natural condition on
the set of positive (1,1)-currents, we are able to prove that weighted energy
classes are preserved under bimeromorphic maps (Proposition 2.2.3).

In the third part of the paper we study the stability of the energy classes
(see e.g. Theorem 2.3.1 and Proposition 2.3.3) and we give some counterex-
amples.

Finally, we compare the Monge-Ampeére capacities w.r.t different big
classes (Theorem 2.4.6) and we use this result to give a partial positive
answer to the stability property of weighted homogeneous classes EP (Propo-
sition 2.4.8).

2.1 Preliminaries

2.1.1 Big classes

Let X be a compact Kihler manifold and let o € H"(X,R) be a real
(1,1)-cohomology class.

Recall that « is said to be pseudo-effective (psef for short) if it can be
represented by a closed positive (1, 1)-current 7. Given a smooth representa-
tive @ of the class a, it follows from dd-lemma that any positive (1, 1)-current
can be written as T = 6 + dd“p where the global potential ¢ is a 6-psh
function, i.e. 6 4+ ddp > 0. Here, d and d¢ are real differential operators
defined as

d:=0+0, dc::—(ﬁ—a).
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The set of all psef classes forms a closed convex cone and its interior is by
definition the set of all big cohomology classes:

Definition 2.1.1. We say that « is big if it can be represented by a Kdhler
current, i.e. there exists a positive closed (1, 1)-current 7' € « that dominates
a Kahler form .

Analytic and minimal singularities

A positive current T = 6 + dd€yp is said to have analytic singularities if there
exists ¢ > 0 such that (locally on X),

N
c Z 2
(pzilog 1|fj| +U,
J:

where u is smooth and fi,...fy are local holomorphic functions.

Definition 2.1.2. If « is a big class, we define its ample locus Amp («)
as the set of points x € X such that there exists a strictly positive current
T € a with analytic singularities and smooth around x.

The ample locus Amp («) is a Zariski open subset by definition, and it is
nonempty thanks to Demaillly’s regularization result (see [Bou04]).

If T and T are two closed positive currents on X, then 7T is said to be
more singular than T" if their local potentials satisfy ¢ < ¢’ 4+ O(1).

Definition 2.1.3. A positive current T is said to have minimal singularities
(inside its cohomology class o) if it is less singular than any other positive
current in a. Its 0-psh potentials ¢ will correspondingly be said to have
minimal singularities.

Such #-psh functions with minimal singularities always exist, one can
consider for example

Vo :=sup{p O-psh,p <0on X}.

Remark 2.1.4. Let us stress that the sum of currents with minimal sin-
gularities does not necessarily have minimal singularities. For example,
consider m : X — P? the blow up at one point p and set E := 7 1(p).
Take o = 7 {wps} + {E} and 8 = 27*{wprs} — {E} where wpg denotes
the Fubini-Study form on P2. As we will see in Remark 2.2.4 currents with
minimal singularities in a are of the form Sy = 7 Tinin + [E] where Ty, is
a current with minimal singularities in {wrg} (i.e. its potential is bounded)
and so they have singularities along E. On the other hand, currents with
minimal singularities in the Kéhler class S have bounded potentials, hence
the sum of currents with minimal singularities in a and in § is a current
with unbounded potentials. But a + § = 37*{wpg} is semipositive hence
currents with minimal singularities have bounded potentials.
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Images of big classes.

It is classical that big cohomology classes are invariant under pull back and
push forward (see e.g. [Bou02b, Proposition 4.13)).

Lemma 2.1.5. Let f : X — — > Y be a bimeromorphic map and ax €
HY(X,R), ay € HYY(Y,R) be big cohomology classes. Then fiax and
fray are still big classes.

Note that this is not true in the case of K&hler classes.

Volume of big classes.
Fix a € Hy;,(X,R). We introduce

Definition 2.1.6. Let Ty, a current with minimal singularities in o« and
let Q a Zariski open set on which the potentials of Tin are locally bounded,
then

vol(a) := / Th, >0 (2.1.1)
Q
is called the volume of «.

Note that the Monge-Ampere measure of Ty, is well defined in € by
[BT82] and that the volume is independent of the choice of Ty, and
([BEGZ10, Theorem 1.16]).

Let f: X — Y be a modification between compact Kahler manifolds and
let ay € HY(Y,R) be a big class. The volume is preserved by pull-backs,

vol(f*ay) = vol(ay)

(see [Bou02b]), on the other hand, it is in general not preserved by push-
forwards:

Example 2.1.7. Let 7 : X — P? be the blow-up along P? at point p.
The class ax = {m*wps} — e{E} is Kahler whenever 0 < ¢ < 1 and
meax = {wrs}. Now, vol(ax) = 1 — &2 while vol(may) = 1.

2.1.2 Finite energy classes

Fix X a n-dimensional compact Kihler manifold, « € H'(X,R) be a big
class and 0 € a a smooth representative.

The non-pluripolar product

Let us stress that since the non-pluripolar product does not charge pluripolar
sets,

vol(a) = [ (i)
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Definition 2.1.8. A closed positive (1,1)-current T on X with cohomology
class « is said to have full Monge-Ampeére mass if

/X (T™) = vol(a).

We denote by E(X, «) the set of such currents. If ¢ is a 0-psh function such
that T = 6 4 dd°p. The non-pluripolar Monge-Ampere measure of ¢ is

MA (p) = (6 + dd“p)") = (T").

We will say that ¢ has full Monge-Ampere mass if 8 + ddp has full Monge-
Ampére mass. We denote by E(X,0) the set of corresponding functions.

Currents with full Monge-Ampeére mass have mild singularities.

Proposition 2.1.9. A closed positive (1,1)-current T € E(X,«) has zero
Lelong number at every point x € Amp («).

Proof. This is an adaptation of [GZ07, Corollary 1.8]. Let us denote Q =
Amp (). We claim that for any compact K CC Q there exists a positive
closed (1,1)-current Tx € o with minimal singularities and such that it is a
smooth Kéhler form near K. Fix 6 a smooth form in o and Tynin = 0+dd pmin
a current with minimal singularities. By Demailly’s regularization theorem
[Dem92], in the big class a we can find a strictly positive current with
analytic singularities Ty = 0 + dd®pg that is smooth on . Then we define

oo = max(pg, Pmin — C)

where C' >> 1. Clearly, Tc = 0 + dd®p¢ is the current we were looking for.
For any point x € 0, let K = B(z,r). Let x be a smooth cut-off function on
X such that x =1 on B(z,r) C K and x =0 on X \ B(z,2r) where r >0
is small. Consider a local coordinates system in a neighbourhood of x and
define the 6-psh function . = exlog || - || + ¢¢ for € small enough. Now, if
T = 0 + dd°p has positive Lelong number at point z, then ¢ < .. On the
other hand T, = 6 + ddi. does not have full Monge-Ampere mass since

/{wESAOCk}ﬂB(W")

does not converge to 0 as k goes to oo, where ¢§’“) = max(Ye, pc — k)
are the ”canonical” approximants of 1. ([BEGZ10, p.229]). Therefore by
[BEGZ10, Proposition 2.14], it follows that T ¢ £(X, «). O

We say that a positive closed (1, 1)-current 7' € « is pluripolar if it is
supported by some closed pluripolar set: if T' = 6 + dd°p, T is pluripolar
implies that suppT C {¢ = —o0}.
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Lemma 2.1.10. For j = 1,....,p, let aj € H"(X,R) be a big class and
T; € . If Ty is pluripolar then

(Ty A ... NTp) = 0.

Proof. First note that, since the non pluripolar product does not put mass
on pluripolar sets, we have

1X\A (YN ATy =(Th A ... ANTy)

with A the closed pluripolar set supporting 77. Now, let w be a Kéahler form
on X. In view of [BEGZ10, Proposition 1.14], upon adding a large multiple
of w to the T;’s we may assume that their cohomology classes are Kahler
classes. We can thus find Kahler forms w; such that T; = w; + dd°p;. Let
U be a small open subset of X \ A on which w; = dd®);, where ¢; <0 is a
smooth psh function on U, so that T; = dd“u; on U. By definition on the
plurifine open subset

O := ﬂ{u] > —k}

we must have 1o, (dd“ui A ... A dd°uyp) = 1o, \; dd° max (u;, —k). Since uy
is a smooth potential on U, u; > —k for k£ big enough and furthermore, since
T is supported by A, we have that dd“u; = 0. So, clearly

1o, /\dalC max (uj, —k) =0
J

and hence the conclusion. O

Weighted energy classes

By a weight function, we mean a smooth increasing function x : R~ — R~
such that x(0) =0 and x(—o0) = —oo. We let

W= {X :R™ — R™ | x convex increasing, x(0) = 0, x(—o0) = —oo}
and
WT:={x:R™ — R~ |x concave increasing, x(0) = 0, y(—o0) = —oo}
denote the sets of convex/concave weights. We say that x € W]\'t[ if IM >0
0 < |tx'(t)] < M|x(#)] for all t € R™.

Definition 2.1.11. Let xy € W := W~ UWT™. We define the x-energy of a
0-psh function ¢ as

D Y N
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with T = 0 + dd°p and O = 0 + ddVy. We set
E(X,0) == {p € E(X,0) | Explp) < +oo}.

We denote by E,(X, ) the set of positive currents in the class o whose global
potential has finite x-energy.

When x € W™, [BEGZ10, Proposition 2.8] insures that the y-energy is
non-increasing and for an arbitrary 6-psh function ¢,

Ex,H((p) = zgp Ex,9<w) E] — 00, —|—OO]
>p

over all ¢ > ¢ with minimal singularities. On the other hand, if x € W]\t[,
we loose monotonicity of the x-energy function but it has been shown in
[GZ07, p.465] that

peE(X,a)  iff  sup Byg(th) < 400
Y2

over all ¥ with minimal singularities. Recall that for all weights x € W™, x €
WT, we have

Ex(X,a) C EM(X,a) C E(X,a) C E(X, a).
For any p > 0, we use the notation

EP(X,0) := & (X,0), when x(t) = —(—t)P.

2.2 Bimeromorphic images of energy classes

From now on X and Y denote arbitrary n-dimensional compact Kéahler
manifolds. We recall that a bimeromorphic map f : X — — > Y can be

decomposed as
r
N
X Y

where 71, o are two holomorphic and bimeromorphic maps and I' denotes a
desingularization of the graph of f. For any positive closed (1, 1)-current 7'
on X we set

fiT = (ma) 7] T.

For any positive closed (p, p)-current S is not always possible to define the
push forward under a bimeromorphic map. However we define f,(S) in the
usual sense in the Zariski open set V where f: U — V is a biholomorfism
and extending to zero in Y \ V.
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2.2.1 Bimeromorphic invariance of the non-pluripolar prod-
uct

The goal of this section is to show that the non pluripolar product is a
bimeromorphic invariant.

Theorem 2.2.1. Let f : X — — > Y be a bimeromorphic map. Let
at, -, ap € HYY(Y,R) be big classes and fiz T; be a positive closed (1,1)-
current in oj. Then

felTi N NTp) = (IO N A fT). (2.2.1)

Proof. By definition of a bimeromorphic map, f induces an isomorphism
between Zariski open subsets U and V of X and Y, respectively. By con-
struction the non-pluripolar product does not charge pluripolar sets, thus it
is enough to check (2.2.1) on V. Since f induces an isomorphism between U
and V we have

(SlTo N AT v = f (Tu A== ANTp)|u) = felTilu A=+ A Tlu)
and
<f*T1 ARRAN f*TpHV = <f*(T1|U) JARERNA f*(Tp’U»'

Now, let w be a Kéahler form on X. Upon adding a multiple of w to each
T; we can assume that their cohomology classes are Kahler. Thus we can
find Kéhler forms w; such that T} = w; 4+ dd“p;. Fix p € U and take a small
open set B such that p € B C U. In the open set B we can write w; = dd“y;
so that T; = dd°uj on B with u; := 1¢; + ;. We infer that

P
f*</\ dd®uj) = (fi(ddur) A A fi(ddup)).
i=1

Indeed on the plurifine open subset Oy := (1 {u; > —k} we have

fol 1o (N\ddw) | = fi| 1o, )\ dd° max(u;, —k)
J J

= 1ﬂj{uj0f—1>—k:} /\ f*(ddc maX(uj7 —k;))
J

where the last equality follows from the fact that for any positive (1, 1)-current
S with locally bounded potential (f,S)™ = f(S™). O

2.2.2  Condition (V)

Finite energy classes are in general not preserved by bimeromorphic maps
(see Example 2.1.7). We introduce a natural condition to circumvent this
problem.



30 Stability of Monge-Ampeére energy classes

Definition 2.2.2. Fiz « a big class on X. Let To(X) denote the set of
positive closed (1,1)-currents in «. We say that Condition (V) is satisfied if

£(Tal X)) = Tra¥)

where Tr,o(Y') is the set of positive currents in the image class fiov.

Theorem A of the introduction is a consequence of Theorem 2.2.1 and
Proposition 2.2.3.

Proposition 2.2.3. Fiz « € H;i’gl (X,R). If Condition (V) holds, then
(i) vol(a) = vol(fa),
(ii) f(E(X,a)) = E(Y, fra),
(iii) fo(Ex(X, ) = E(Y, fea) for any weigth x € W~ U Wy,
Observe that in general vol(a)) < vol( fecr) (see Example 2.1.7).

Proof. Fix Ty a current with minimal singularities in . Observe that
Condition (V) implies that f,Tpip is still a current with minimal singularities,
thus

vol(a) = [ (T} = [ (AT} = vol( ).

Fix T € T,(X). Using Theorem 2.2.1, the change of variables formula and
the fact that the pluripolar product does not put mass on analytic sets we

get
| = [ o

hence by (i) it follows that
Teé(X,a) <= f.T &Y, fua).

We now want to prove (iii). Let T = 6 + ddp and T}, = 0 + dd°o"* where
©* = max(¢p, Vp — k) are the canonical approximant (note they have minimal
singularities and decrease to ¢). We recall that f induces an isomorphism
between Zariski opens subsets U and V, thus by (ii) and the change of

variables we get that for any j =0,--- ,n
J 06 = Vo @E A = [ (=)0 = V)T A )
X U
= /V (0" o f 7 = Vo o fTOY(£T) A (Fubimin)" ™)

hence the conclusion. O
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Condition (V) is easy to understand when f is a blow up with smooth
center:

Remark 2.2.4. Let 7 : X — Y be a blow up with smooth center Z,
let E = 77 '(Z2) be the exceptional divisor and fix a big class z on X.
There exists a unique v € R such that at the level of cohomology classes
ax = m'max + y{E}. Furthermore, for any (1,1)-current S € ax there
exists a (1,1)-current T' € m,ax such that S = 7*T + v[E] and S is positive
iff T is positive and v > —v(T, Z) (consequence of Proposition 8.16 in
[Dem09] together with Corollary 1.1.8 in [Bou02al). If Condition (V) holds,
then any current Sy, with minimal singularities in ax admits the following
decomposition
Smin = T Tmin + ’Y[E]

where Tiyiy is a current with minimal singularities in m,ax. When v > 0,
Condition (V) is always satisfied. On the other side, when v < 0 this is not
necessarily the case since it could happen that for some positive current 1" in
meax, V(T,2) < —v (see Example 2.1.7 where v = —¢ and v(wpg, Z2) = 0).
We observe indeed that Condition (V) is equivalent to require that every
current Ty € m,ax is such that v(Ty, Z) > —.

As the first statement of Proposition 2.2.3 shows, there is a link between
Condition (V) and the invariance of the volume under push forward. For
example, if Z Z X \ Amp (m,ax) then

vol(ax) = vol(meax) <= m (7;X (X)> = ooy (Y).

Indeed (=) is an easy consequence of the fact that under the assumption
on the volumes we can decompose any current with minimal singularities
Smin € ax as Spin = 7T + y[F] whith T' € E(Y, meax ). Proposition 2.1.9
implies v(T, Z) = 0, hence v > 0. Let us stress that the assumption on Z
could be removed if we knew that v(T,y) = v(Tin,y) for any T with full
Monge-Ampere mass, for any Ty, with minimal singularities in m,ax and
for any y € Y. It is however quite delicate to get such information at points
y which lie outside the ample locus.

Proposition 2.2.5. Let f : X — —— > Y a bimeromorphic map between
compact Kdahler manifold of complex dimension 2. Then the following are
equivalent:

(i) vol(ar) = vol( frax)
(ii) fo(Ta(X)) = Tr.a(V).

Proof. Let us recall that (i7) always implies (¢). Furthermore by Noether’s
factorization theorem it suffices to consider the case of a blow-up at one point
p. We write a = m*mear + v{E}. We recall that if v > 0 there is nothing
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to prove, we can thus assume v < 0. Let S be a current with minimal
singularities representing a and 7' a current with minimal singularities
representing m,«. By [BEGZ10, Proposition 1.12], 7*T" € 7*m«a is also
with minimal singularities. Note that 7*7" is cohomologous to S — 7[E].
Since « is big, the Siu decomposition of S gives in cohomology the Zariski
decomposition of «, and similarly the Siu decomposition of 7*1" gives the
Zariski decomposition of 7*m,« (see e.g. [Bou04]). Furthermore, since 7*T" is
minimal every divisor appearing in the singular part of the Siu decomposition
of 7*T also appears in the singular part of the Siu decomposition of S — y[E]
with larger or equal coefficients. Then we write the Siu decomposition of S
and of 7*T as

N N
S=0+3 N[Di]+Xo[E], ©T =1+ mlDi]+nolE]
i=1 =1

with D; # FE for all i, A\; > 0, Ag,n:,m0 > 0, where in particular ng =
v(r*T,E) = v(T,p). Moreover {0}, {7} are big and nef classes and p; =
XNi—1n; >0, p0=X—7—mn0>0. It follows that

{0+ A} = {7} (2.2.2)

where A = Ef\; 1 PilDi] + po[E] is an effective R divisor. Observe that if
we show pg = 0 then A\g = g + v = v(T,p) + v > 0 and so we are done.
Intersecting first with # and then with 7 the relation (2.2.2), using the
assumption on the volumes, i.e. {#}% = {7}, the fact that A is effective, and
that 7 and 6 are nef, we find {7} - {A} = {0} - {4} = 0. If we develop the
square of the left hand side of (2.2.2) we conclude {A}? = 0. Since {0}? > 0,
the Hodge index theorem shows that {A} = 0 and since A is effective, it is
the zero divisor. Hence pg = 0. O

We expect that v(T, z) = v(Tiin, z) for all 2 € X whenever T € £(X, a).
We show the following partial result in this direction:

Proposition 2.2.6. Let X be a compact Kdhler surface, o be a big class
on X and T € E(X,a). Then the set {z| v(T,x) > v(Tmin, )} is at most
countable.

Proof. We write the Siu decomposition of the current 7' as T = R +
Z;y:1 Ai[D;]. Note that the set E,(T) := {x € X | v(T,z) > 0} con-
tains at most finitely many divisors (Proposition 2.1.9). We claim that
{R} is big and nef. Indeed, by construction the current R has not positive
Lelong number along curves and so any current with minimal singularities
Rumin € {R} has the same property. Thus the Zariski decomposition of {R}
is of the type {R} = {R} + 0. Furthermore

vol({B}) < vol(a) = /

X

(T?) = /X (R?) < vol({R}),
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that implies vol(a) = {R}? > 0. Then T'= R + Zjvzl pilDi] + Zjvzl ni[D;],
where 1, = v(Twin, Di) with T € a. Clearly p; > 0, for any i. We
want to show that p; = 0. Set S := R+ Z;VZI pi|D;] and write the Zariski
decomposition of o as v = g + z;vzl ni{D;}. Then oy = {S}. This means
that {S} is big and nef and vol(a) = of = {S}2. Now, {R + A} = {S}
where A = Z;Vﬂ pi|Di] is an effective R divisor. Using the same arguments
in the proof of Proposition 2.2.5 we get {A} - {R} = {A} - {S} ={A}2 =0
and using the Hodge index theorem we conclude. O

2.3 Sums of finite energy currents

Let X be a compact Kahler manifold of complex dimension n and let o and
B be big classes on X. Given two positive currents T' € « and S € 8 with
full Monge-Ampere mass, it is natural to wonder whether 7'+ S has full
Monge-Ampeére mass in « + 3, and conversely.

2.3.1 Stability of energy classes

We start proving Theorem B of the introduction.
Theorem 2.3.1. Fiz T € To(X), S € T3(X) and x € W~ UW,,. Then
(i) T+ S €&(X,a+ ) impliesT € E(X,a) and S € £(X, f3),
(ii) T+ S € E(X,a+ B) implies T € £,(X,a) and S € &(X, B).
If a, B are Kahler classes, then conversely
(i) T € E(X,a) and S € E(X, B) implies T+ S € E(X,a+ ),
(iv) T € E(X,a) and S € (X, B) implies T + S € & (X,a+ B).

Proof. Pick 0, and 63 smooth representatives in o and (3, so that 6 := 0o +03
is a smooth form representing o + 5. We decompose T' = 0, + dd‘p and
S =0 + dd“). We assume ¢ + 1) € £(X, 0), and first prove that ¢ has full
mass, which is equivalent to showing

mg = / (0 + dd° max(p, emin — k))") — 0 as k — +oo
{‘pgﬂomin_k}

where Tinin = 0o + ddpmin has minimal singularities in « ([BEGZ10, p.229]).
First, observe that on X \ {¢p = —oco} we have

{@S@mm_k}g{Q0+w§§0mm+w_k}g{gp—i_wé(bmm_k}
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where Spin = 0 + dd®Pmin has minimal singularities in « + 8. Since the
non-pluripolar product does not charge pluripolar sets, we infer

0<my < / (0 + dd® max(p, min — k))")
{§0+¢S¢mm_k}
< / (6 + dd° max (¢ + ¥, Pmin + ¥ — k))™)
{§0+¢S¢min_k}\{¢:_w}
< / <(0§ + dd° max(cp + ¥, Pmin — k))n>
{§0+¢S¢min_k}

where the last inequality follows from the fact that ¢, is less singular then
“min + ¥ (see [BEGZ10, Proposition 2.14]). But, by assumption, the last
term goes to 0 as k tends to 400, hence the conclusion. Changing the role
of ¢ and 1 one can prove similarly that also 1 is with full Monge-Ampere
mass.

We now prove the second statement. By assumption ¢ + ¢ € &, (X, 5)
with x a convex weight and so from above we know that ¢ and v both
have full Monge-Ampere mass. It suffices to check that ¢ € &, (X, 6,). By
[BEGZ10],

Bea(e) <400 il sup [ (=)~ omin) M) < 405
X

for any sequence @ of O,-psh functions with full Monge-Ampere mass

decreasing to ¢. Since T1 < T3 implies (T7") < (T3") we obtain

/X ()% — prmin) (0 + ddC01)")
< / (=)@ — Pmin) (0 + dd (05 + 1))
X\ =00}
< / (—3)(@k + 1 — bmin)MA (24 + )
X\{¢p=—00}

where the last inequality follows from monotonicity of y and the fact that

on X\ { = o0}
Pk — Pmin = (‘Pk + ¢) - (‘Pmin + "p) > (Spk + ¢) — ®min-

Therefore E_5(¢ +v) < +oo implies E) g, () < 400, as desired.

Assume now that «, 8 are both Kéhler classes and choose Kéhler forms
wa € a, wg € [ as smooth representatives. We want to prove that if
¢ € E(X,wa) and ¢ € E(X,wg) then ¢ + 19 € E(X,wa + wg). Let w
be another Kéhler form on X. We first show that ¢ € £(X,wy) (resp.
¢ € E(X,wq)) if and only if ¢ € £(X,w) (resp. ¢ € &(X,w)) whenever
¢ € PSH(X,w). We recall that, since w, and w are Kéhler forms, there
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exists a constant C' > 0 such that %w < wy < Cw. Thus

/ (Wa +ddpr)" < / (Cw + ddpr)"
{p<—k} {p<—k}
j=0 /{p=—k}

where ¢}, := max(p, —k). And so ¢ € £(X,w) implies ¢ € £(X,w,). Analo-
gously one can prove the reverse. Similarly, for any weight x € W~ U W7,

/ —X(pr)(Wa + ddpi)" < C E / —x(pr) (W + ddpp) A W™,
X ; X
7=0

Thus, if ¢ € & (X,w) then ¢ € & (X,w,). With the same argument we
get the reverse. Now, let w be a Kéhler form such that w,,ws < w. From
above we have that ¢, € £(X,w) (resp. ¢,¢ € & (X,w)) and since the
energy classes are convex ([GZ07, Propositions 1.6, 2.10 and 3.8]), it follows
o+ e E(X,2w) (resp. p+ ¢ € £ (X, 2w)). From the previous observation
we can deduce ¢ + ¢ € E(X,wq + wpg). O

Examples 2.3.5 and 2.3.7 below show the reverse implication is not true in
general. This is particularly striking if the following condition is not satisfied:

Definition 2.3.2. We say that pseudoeffective classes o, -+, oy satisfy
Condition MS if the sum Ty + --- + T}, of positive currents T; € o; with
minimal singularities has minimal singularities in oy + - -+ + .

Note that if a1, - - , o, satisfy Condition MS the positive intersection
class (a1 - - - ) turns to be multi-linear while it is not so in general ((BEGZ10,
p.219)).

Proposition 2.3.3. Let T' € To(X) and x € W~ UW,,. Assume that o
is a Kahler class and B is a semi-positive class. Fix 03 €  a semipositive
form. Then

(i) T+605 € &E(X,a+p) if and only if T € £(X, ),
(i) T+ 05 € E (X, a+ B) if and only if T € £ (X, ).

We will exhibit an Example 2.3.5 such that « is semipositive, 5 is Kéhler,
03 is a Kéhler form in 3, T € E1(X,a) but T+ 05 ¢ E(X, a + B).

Proof. We will first prove the second statement. Fix w, g smooth represen-
tatives of o and 3, respectively and denote w := w 4+ 3. Note that w can be
chosen to be Kahler. Let T':= w + dd‘p € &£,(X, ), by [BEGZ10] we have

EXM(SO) < sup Ex,w(gok) < +o0
k
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where ¢y, := max(p, —k). We now show that F, ;(¢y) is uniformly bounded
from above. Fix A such that @ < (A + 1)w. Then

/ (w) @ + ddipi) NG
X

< (A4 1) / (n) (Aw + w + ddipp) A
X

J
Z/ X(1) (W + dd°pp) ™' AW I < O By (1)
=0

The first statement is an easy consequence of the second one recalling

that
U E(X, a).
XEW—

The reverse inclusions is Theorem 2.3.1. O

Remark 2.3.4. Let us stress that the first statement of Proposition 2.3.3
could be proved in great generality («, § big classes such that Condition
MS holds, 03 current with minimal singularities) if given ay,--- , ay, big
classes and T1 € £(X, a1), the following would hold

/ <T1 A 02,min A A 9n,min> — / <91,min AR 0n,min>
X X

where ei,min =0; + ddCVgi € Q4.

2.3.2 Counterexamples

The following example shows that given two currents T € £1(X, a) and
S € £YX, B) we can not expect that T+ S € EY(X,a + B), even if « is
semipositive and § is Kéahler.

Example 2.3.5. Let 7 : X — P? be the blow up at one point p and
set £ := 7 1(p). Fix a = m{wps} and B = 27*{wrs} — {E} so that
a+ =3 {wrs} — {E}. We pick @ € o + 8 a Kéhler form of the type
W = m*wprg + w, where w € B is a Kahler form. We will show that

EMX,a) € EY(X,a+ B) N Ta(X).

The goal is to find a wpg-psh function ¢ on P? such that 7*p € E1(X, T wrg)
but ¢ ¢ (X, o). Let U be a local chart of P? such that p — (0,0) € U.
We define

1
s i:5x'u5—K5

where us := —(—log||z||)%, x is a smooth cut-off function such that y =1
on B and x =0 on U \ B(2), K; is a positive constant such that ¢s < —1
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and C > 0. Choosing C big enough ¢s induces a wpg-psh function on P?,
say ¢s. Note that by [CGZ08, Corollary 2.6] ¢s € E(P?, wrg) if 0 < < 1.
We let the reader check that g5 € W12(P2,wpg) for all 0 < § < 1. Therefore
s € EY(P?, wrg) iff

/ —@s(ddps)? < +o0
HDQ

We claim this is the case iff 0 < § < %
Note that s is smooth outside p, therefore we have to check that

/ —ug(ddus)? < +oo0. (2.3.1)
B(3)

N

Set x(t) = —(—t)° so that us = x(log |z||). Then on B(3)\ {(0,0)} we have

(dd°us)? = X - X (log||z|])dz1 A dz1 A dzg A dZ

1
Ci =
8|z*

hence the convergence of the integral in (2.3.1) is equivalent to the convergence

of

dz1 Ndzy AN dzog N\ dZsy

/ —x(log||2])) - X" (log ||2]]) - X (log ||2]))
B(1\{(0,0)} [l

+oo 1

1 " /
2 —x(logp) - x (logp) - x (logp) /
— dp=6(1—96 S
/0 p P ( ) 7log% (5)3_36

which is finite iff 0 < § < %, as claimed. Therefore by Proposition 2.2.3 we
get T @s € EY(X, mwps). But 7*@s ¢ E1(X, @) if § <& < 2 since

V(7 @s)| & L*(X, (@)%) if 62

N |

Indeed, let z = (21, 22) € B and fix a coordinate chart in X, then m(s,t) =
(21, 22) = (s, st). Therefore, on 7~ 1(BB)

1 1 6
psom(s,t) = Eu(g(s,st) == (— log|s| —log /1 + |t|2)

Hence,

/ﬂl(B)

which is not finite if § > % The conclusion follows from [GZ07, Theorem
3.2].

(g5 om)
0s

2 2 _ T
_ 1) ds Nds N dt N dt

ds/\d§/\dt/\dt2<> /
20) Jr1m) Is[*(—logs])2=2
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Remark 2.3.6. Observe that «, g satisfy Condition MS in previous example
and also that @5 € £(X,®). Indeed, let T := m*wpg + dd®(ps o ), we need
to check that T+ w € £(X,a + ). Since T' € £(X, a) and

(T +w)?) = (T?) +2(T) Aw + (w)2.
it suffices to show that

{(T) Aw} = {m"wrs} - {w}.

which is equivalent to
(T — (1) Aw} =0

Hence, what we need to show is that 7'— (T") = 0. The (1, 1)-current 7' — (T')
is positive and is supported by the exceptional divisor E. Therefore using
[Dem09, Corollary 2.14] it results that

T =(T)+[E]
where v = v(T, E) = v(m, T, p) = 0 since § < 1. And so the conclusion.

Previous remark could let us think whenever T' € £(X, ) and S € £(X, )
then T+ S € E(X, a+ ), but this is not true either as the following example
shows:

Example 2.3.7. Let 7 : X — P? be the blow up at one point p and set
E :=771(p). Consider a = n*{wpg}+{F} and 8 = 27*{wrs} — {E}. Thus
a+ f=3m"{wrg}. Since B is a Kéhler class we can choose S = w with w a
Kahler form.

Observe that currents with minimal singularities in « are of the type 7* Spin +
[E], where Smin is a current with minimal singularities in {wpg} (Remark
2.2.4). By Lemma 2.1.10

vol(a) = /X ((7*Swin + [E])?) = /

X

(" Suin)?) = [ 7520 = 1.

X
while vol(a + 8) = (a + 8)2 = 9. Let now T € £(X, ) and recall that any
positive (1,1)-current in « is of the form T' = 7*S + [E] with S € Ty, .41 (P?).
In particular we choose T := m*wrg + [E]. We want to show that T+ w ¢
E(X,a+ B). Now, from the multilinearity of the non-pluripolar product we
get

[ swp) = [ (ors + 18]+ 02) = [ (rwps + 0 =
X X X
Hence [ (T + w)?) =8 < 9 = vol(a + j).

The same type of computations show that if we pick T € £(X, a), then,
forany 0 <e <1, T+ ew ¢ E(X,a+ cw).

Remark 2.3.8. Note that in the latter example «, 8 do not satisfy Condition
MS.
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2.4 Comparison of Capacities

Let X be a compact Kéhler manifold of complex dimension n and let « be a
big class on X. Set 6 € a smooth form and O, := 6 + dd°Vy the positive
(1,1)-current in o with ’canonical’ minimal singularities.

2.4.1 Intrinsic Capacities

We introduce the space of ” 0 yin-plurisubharmonic” functions
PSH(X,0min) :=={¢ | ¥+ Vg is a 6 — psh function} .

Note that a Oyi,-psh function ¢ is not upper-semi-continuous but v + Vj is.

Monge-Ampeére capacity

Following [BEGZ10] we introduce the Monge-Ampére capacity with respect
to a big class.

Definition 2.4.1. We define the capacity of a borel set K C X as
Capy_ . (K) :=sup {/ {((Omin + dd°¥)™), ¥ € PSH(X, Opin) | —1 < < O} .
K

Observe that the above one is the same definition as [BEGZ10, Definition
4.3], just taking ¢ = ¢ — Vp, where ¢ is a 0-psh function. Here we introduce
this equivalent formulation since in Section 2.4 we need the positivity of the
reference current Opip.

The relative extremal function

We introduce the notion of the relative extremal function with respect to
Omin. If E is a Borel subset of X, we set

W 0y () 1= sUp {(2) [ € PSH(X, Omin), 1 < 0 and ¢p < —1},

and
h*Ezamin = (hEvemin + ‘/‘9)* - ‘/6

It is a standard matter to show that, as in the Kéhler case (see [GZ05]), the
O min-psh function h*E,(?min satisfies

Capy, , () = | MA (Vo + Hica,,,) = [ (~Hica,, IMA (Vi + bigy,,,)
K X

where K C X is a compact set (for details see [BBGZ13, Lemma 1.5]).
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Capacities of sublevel sets
We now generalize [GZ07, Lemma 5.1].
Lemma 2.4.2. Fiz x e W~ UW,,;, M > 1. If p € (X, 0), then
3C, > 0,Vt > 1, Capy_ . (0 < Vo —1t) < Cplt x(—t) 7t
Conversely if there exists Cyp,e > 0 such that for all t > 1,
Capg, . (o < Vo —1) < Cplt"™* x(—t)| ",
then ¢ € £,(X,0).

Proof. Fix ¢ € £,(X,0) and u € PSH(X,0) such that —1 <u—Vj <0. For
t > 1, observe that by [BEGZ10, Proposition 2.14], £ + (1 — 1) Vj € £(X,0)
and

~-V
(g@—V9<—2t)§<(P ; 9<—1—|—u—V9>§(g0—V9<—t).

It therefore follows from the generalized comparison principle and from the
multilinearity of the non-pluripolar product ([BEGZ10, Propositions 2.2 and
1.4]) that

Lo -6
(9= Vo<—2t) (p=Vo<—1) t t
1 n/ —1 ( ) / k n—k
S 1—- m1n t <T A gmm )
< t) (p=Vp<— t) Z (p—Vp<—t)

where T := 6 + dd®p. Furthermore, since
MA(Vg) = 1{y,=0}0"
(see [BD12, Corollary 2.5]), we get

/ () = / 0" = 1p8"(p < —t) < Cu(p < —1),
(p—=Vp<—t) (p—Vo<—t)ND

where D := {Vy = 0}, w is a Kahler form on X and C' > 0. We recall that
vol, (¢ < —t) decreases exponentially fast (see [GZ05]) and observe that for
all 1 <k <n,

(o=Viy<—t) !X ] Jx
This yields the first assertion.

The second statement follows from similar arguments as in the Kéahler
case, working with the 6-psh function u := %got + (1 — %) Vy where ¢; :=
max(p, Vg — t) for any ¢ € PSH(X,0). Let us stress that this is the only
place where the assumption on the weight, x € W~ U W]T/[ is used. O
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Alexander capacity

For K a Borel subset of X, we set
Vg ==sup{p | p € PSH(X,0), ¢ <0 on K}.

Note that
Vo=Vxo<Vkp

by definition. It follows from standard arguments (see [GZ05, Theorem
4.2]) that the usc regularization Vfgﬂ of Vi g is either a #-psh function with
minimal singularities (when K is not-pluripolar) or identically +oo (when
K is pluripolar).

Definition 2.4.3 (Alexander-Taylor capacity). Let K be a Borel subset of
X. We set
Ty(K) = exp(— Sup Vico)-

As in the Kéhler case, the capacities Ty and Capg_. compares as follows:

min

Proposition 2.4.4. There exists A > 0 such that for all Borel subsets
KcX,

min (

Proof. Tt suffices to treat the case of compact sets. The second inequality is
[BEGZ10, Lemma 4.2]. We prove the first inequality. We can assume that
M = My(K) > 1 otherwise it is sufficient to adjust the value of A. Let
¢ be a 0-psh function such that ¢ < 0 on K. Then ¢ < M on X, hence
w:=M"1(p—M—Vy) € PSH(X,Oin) satisfies supy w < 0 and w < —1
on K. We infer w < h;{’emin and
Vig—M -V
Wi 1= K’HTG < *Kaemin <0.

Then we get
Capgmin (K) = /);_ (_ >|i{aenﬁn) MA (‘/0 + h}}79min)

1 * %
S M/ _(VK,B — M - ‘/9) MA (V9 + hK,Gmin)
X

a

<
- M

with C7 > 0. The last estimate follows from Lemma below together with
[GZ05, Proposition 1.7] since supx(Vzy — M — Vy) = 0 and by [BD12,
Corollary 2.5], (0 + dd°Vp)") = 1{y,—30" < Cw". O
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The following Lemma is a straightforward generalization of [GZ05, Corol-
lary 2.3], (see also [BBGZ13, Lemma 3.2]).

Lemma 2.4.5. Let v, ¢ be 0-psh functions with minimal singularities with
@ normalized in such a way that 0 < ¢ — Vy < 1. Then we have

/X ~( = V(04 ) < [ (0= Vi) (O +dd Vi) + nvol(a).

X

2.4.2 Comparing Capacities

We introduce a slighty different notion of big capacity that is comparable
with respect to the usual one. For any Borel set K C X we define

min

Capg‘ (K) := sup {/ ((Opin + dd°)™), b € PSH (X, Omin) | — A <9 < O} ,
K
where A > 1. We let the reader check that

Capy_. (K) < Capp_ (K) < X"Cap,_ (K). (2.4.1)
We now compare the Monge-Ampeére capacities w.r.t. different big classes
(Theorem D of the introduction).

Theorem 2.4.6. Let a1 and g be big classes on X such that aq < as. We
assume that {a1, a0 — a1} satisfies Condition MS and that there exists a
positive (1,1)-current Ty € ag — a1 with bounded potentials. Then there exist
C > 0 such that for any Borel set K C X,

S|=

B

C Capgl,min (K) S Cap02,min (K) S C (Capel,min (K)>

Note that in case of Kéhler forms the result is stronger and the proof much
simpler (see [BEGZ10, Proposition 2.5]) but we can not expect better in the
general case of big classes. In the following, Example 2.4.7 shows that the
exponent at the right-hand side is necessary.

Proof. Fix 01 € a1, 03 € as smooth forms. Write Ty = (62 — 01) + dd€ fy
where fp is a bounded potential. Let ¢ be a #;-psh function such that
—1 < p—Vp, <0 then ¢+ fyis a O2-psh function. Condition MS insures that
the potential Vj, + fo has minimal singularities, thus there exists a positive
constant C' such that |V, —Vp, — fo| < C. Therefore —\ < o+ fo—C—Vp, <0
where A\ = 1+ 2C. Now, using (2.4.1) and the fact that 71 < Tb implies
(T7) < (TF) we get

/ (01 + ddeo)™y < / (8 + (o + o))
K K
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namely Capy, . (K) < Cap§‘2 . (K) < A\"Capy, . (K) hence the left in-
equality. In order to prove the other inequality we have to go through the
Alexander capacity. Since Vi -+ fo < Vg

sup(V;;’K) > sup(Vé’LK) + inf fo,
X X X

and so
Ty, (K) < Tp,(K) - e~ nix Jo,

Furthermore, using Proposition 2.4.4 we get

A
exp | ———mm— < Ty (K
Cap92,min (K) ] ’ ( )
< Ty (K) . e~ infx fo+1
1
< emimfxfotl g |- ( vol(a) >

Capel,min (K)

with A a positive constant. Thus, there exists a constant C' > 0 such that

-1

1
vol(a) A
Cap92’mm (K) S A (M) + lgl(f f(] —1
1,min
< CCapgl)mm(K)%.
Hence the conclusion. OJ

Example 2.4.7. Let 7 : X — P? the blow-up at one point p and set
E := 771(p). Consider a; = {m*wps} and az = {©} where & is a Kihler
form on X. Let A, be the polydisc of radius 7 < 1 on P2. By [GZ05,
Proposition 2.10] and [Kl1i91, Lemma 4.5.8] we know that

1

Capres g (1 (A1) = Cabi g (Ar) ~ 5.

Fix now a local chart U C X such that p € U and consider K, C U,
K,:={(s,t) eU | 0<|s]| <, 0<|t]| <1}. Then

1
—logr’

Capg (171 (Ar)) > Capg(K;) ~ C

with C' a positive constant.
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2.4.3 Energy classes with homogeneous weights

As Example 2.3.5 shows we can not hope to get stability of weighted energy
classes &£, by only adding Condition MS. We nevertheless establish a partial
stability property with a gap for energy classes with respect to homogeneous
weights x(t) = —(—t)P. We recall that the functions x(t) = —(—t)? belong
to W™ if 0 < p < 1 while they belong to Wz\+4 when p > 1.

Proposition 2.4.8. Let o, 8 be big classes. Assume that S € 3 has bounded
potential and the couple (v, B) satisfies Condition MS. If p > n? — 1 then

Tebll(X,a) =T+8Scl X, a+p),
where 0 < g < p—n?+1.

Proof. Fix 8,05 smooth representatives of a, 3, respectively and set 6 :=
0o + 03. Write S = 05 + dd“y and denote Oqmin = 0o + dd°Vp, and
Omin := 0+ ddVz. We want to show that there exists a positve number ¢ < p
such that given a f,-psh function ¢ € EP(X,6,) then ¢ + 1 € £9(X,6). By
the first claim of Lemma 2.4.2, for any ¢ > 1 there exists a constant C,, > 0
such that

Capy @ — Vy, < —t) < Ot~ T, (2.4.2)

-
The goal is to find a similar estimate from above of the quantity Capémin(go +
Y — Vi < —t). Set K :={p—Vy, < —t} and K := {o+v—V; < —t}. We
infer that Condition MS implies K C K. Thus Cap; (K) < Cap; (K).
Now, by Theorem 2.4.6 we know that there exists A > 0 such that

min

Capj, (K) < A Cap,_ . (K)7 <C, e

where the last inequality follows from (2.4.2). This means that there exist
Cy, e > 0 such that
Cap; (K) < C’wt*(’”“q)

with 0 < ¢ <p-— n? +1 — ne. Hence by Lemma 2.4.2 we get ¢ + ¢ €
E1(X,0). O



Chapter 3

Finite energy measures

Introduction

In [BBGZ13| the authors show that degenerate complex Monge-Ampere
equations in a big cohomology class of a compact Kéahler manifold can
be solved using a variational method independent of Yau’s theorem. In
particular, they define the electrostatic energy E*(u) of a probability measure
pon X which is a pluricomplex analogue of the classical logarithmic energy
of a measure.

They then give a very nice and useful caracterization (that for our
purposes we will take as definition) of measures p with finite energy:

Definition. A non-pluripolar probability measure p has finite energy in a
big class & on X if and only if there exists T € £'(X, «) such that

)
vol(a)”

In this case we write u € MA (£1(X, a)).

It is natural to wonder if such a notion is a bimeromorphic invariant. It
turns out that it is invariant under biholomorphism but not under bimero-
morphisms. Similarly we consider the dipendence on the cohomology classes.
We prove the following:

Proposition A. Let o, 8 be Kéahler classes. Then
1€ MA (EY(X,0)) <= p € MA (E1(X, B)).

On the other hand in Example 3.3.2 we show that this notion is not bimero-
morphic invariant, and in general it depends on the cohomology class. In
fact, we have

Proposition B. Let 7 : X — P2 be the blow-up at one point. Then there
exists a probability measure p and a Kahler class {&} on X such that

45
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() p€ MA (€(X.{&})) but p ¢ MA (€'(X, {w*wps})).

(i) mep ¢ MA (EXM(X, {m@})) .

We then work in the Kahler setting and we give some criteria in order
to insure that a given non-pluripolar probability measure has finite energy.
Observe that, given a non-pluripolar probability measure p and a Kahler
form w normalized such that vol(w) = 1, by [GZ07] we can always solve the
Monge-Ampere equation

(w+dd°p)" = p.

whith ¢ € £(X,w). Giving condition for having p with finite energy is
therefore equivalent to establish whenever ¢ belongs to (X, w).

Following the ideas in [DNL14a, DNL14b], we are able to do that when
1 is dominated by the generalized Monge-Ampere capacity:

Proposition C. Let ¢ € £Y(X,w/2). Assume there exists a constant A > 0
such that
p < ACapyt

for some € > 0. Then p has finite energy in {w}.

Here Cap,, denotes the generalized Monge-Ampere capacity, defined for any
Borel set £ C X as

Capy(E) ::sup{/EMA(u) | uwePSH(X,w), w—lgugd)}.

We also look at measure with densities, i.e. of type u = fdV, and we ask
under which conditions on f we are able to insure p € MA (£(X, a)).

If f e LP(X), with p > 1, then from Kolodziej’s work we can deduce that
1 is the Monge-Ampere measure of a bounded function and in particular has
finite energy. Clearly, the assumption of being in L? for some p > 1 is very
strong and we search for some “minimal” conditions on f.

We consider, for example, densities that locally can be written as

h

[T5=1 1212 (= log |2;) 1+

where h is a smooth function, 1/B < h < B for some B > 0 and « > 0. Let
us stress that in this case f € L'(X) but not in LP(X) for any p > 1. We
can nevertheless give a complete caracterization in these special cases:

f=

Proposition D. Let w be a Kéhler form. The following holds:
(i) If @ > 1/2, then p € MA (XX, {w})).
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(ii) If o < 1/2, then pu ¢ MA (EY(X, {w})).

Let us describe the contents of this chapter. We first recall some definitions
and known facts. In Section 3.2 we prove Propositions B and C and we give
some concrete examples of measures with finite energy. We then discuss the
invariance properties of finite energy measures and we give a counterexample
insuring the non invariance under bimeromorhic maps (Section 3.3).

3.1 Preliminaries

3.1.1 Big classes and the non-pluripolar product

Let X be a compact Kéahler manifold of complex dimension n and let
a € HY'(X,R) be a real (1,1)-cohomology class. Recall that « is said
to be pseudo-effective (psef for short) if it can be represented by a closed
positive (1,1)-current 7. Given a smooth representative 6 of the class «,
it follows from d0-lemma that any positive (1,1)-current can be written as
T = 6 4 dd°p where the global potential ¢ is a @-plurisubharmonic (6-psh
for short) function, i.e. @ + dd°p > 0. Here, d and d° are real differential
operators defined as

_ i

d:=0+0, d¢ .=

The set of all psef classes forms a closed convex cone and its interior is by
definition the set of all big cohomology classes.

We say that the cohomology class « is big if it can be represented by a
Kahler current, i.e. if there exists a positive closed (1, 1)-current T € « that
dominates some (small) Kéhler form. By Demailly’s regularization theorem
[Dem92] one can assume that Ty := 6 4+ dd°p has analytic singularities,
namely there exists ¢ > 0 such that (locally on X),

N
C 2
o = §log E 1 | fil” +u,
]:

where wu is smooth and fi,---, fy§ are local holomorphic functions.

Definition 3.1.1. If o is a big class, we define its ample locus Amp («)
as the set of points x € X such that there exists a strictly positive current
T € a with analytic singularities and smooth around x.

Note that the ample locus Amp () is a Zariski open subset by definition,
and it is nonempty since T’y is smooth on a Zariski open subset of X.

If T and T" are two closed positive currents on X, then T is said to be
more singular than T" if their local potentials satisfy ¢ < ¢’ + O(1).
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A positive current T is said to have minimal singularities (inside its coho-
mology class «) if it is less singular than any other positive current in a. Its
f-psh potentials ¢ will correspondingly be said to have minimal singularities.
Note that any 6-psh function ¢ with minimal singularities is locally bounded
on the ample locus Amp («) since it has to satisfy ¢ < ¢ + O(1). Further-
more, such #-psh functions with minimal singularities always exist, one can
consider for example

Vo :=sup {p O-psh,p <0 on X}.
We now introduce the volume of the cohomology class a € H ;i’gl (X,R):
Definition 3.1.2. Let T,y a current with minimal singularities in o and

let Q a Zariski open set on which the potentials of Tin are locally bounded,
then

vol(a) := / ™ >0 (3.1.1)
Q
1s called the volume of o.

Note that the Monge-Ampere measure of Ty, is well defined in € by
[BT82] and that the volume is independent of the choice of Ty, and €
(BEGZ10, Theorem 1.16]). Given 11, ...,T), closed positive (1,1)-currents, it
has been shown in [BEGZ10] that the (multilinear) non-pluripolar product

(Ty A ... NT)

is a well defined closed positive (p, p)-current that does not charge pluripolar
sets. In particular, given 1, ..., ¢, 6-psh functions, we define their Monge-
Ampere measure as

MA (@1, ...¢on) == ((0 + dd°p1) A ... A (6 + ddpy)).

By construction the latter is a non-pluripolar measure and satisfies

[ MA@ ) < voll{8)).
X
In the case 1 = ... = ¢, = ¢ we simply set

MA (¢) = MA(¢p, ...¢).

By defintion of the volume of {#} and the fact that the non-pluripolar
product does not charge pluripolar sets, it is then clear that for any T, =
0 4+ dd pmin € {0} current with minimal singularities, one has

J A Gin) = [ (T20) = vol((6))



3.2. Finite Energy Measures 49

3.1.2 Finite (weighted) energy classes
Let o € HYY(X,R) be a big class and § € a be a smooth representative.

Definition 3.1.3. A closed positive (1,1)-current T on X with cohomology
class « is said to have full Monge-Ampere mass if

/X (T™) = vol(a).

We denote by E(X,a) the set of such currents. If ¢ is a 6-psh function
such that T = 0 + dd°p, we will say that ¢ has full Monge-Ampere mass
if 0+ ddp has full Monge-Ampére mass. We denote by £(X,0) the set of
corresponding functions.

Currents with full Monge-Ampere mass have mild singularities, in partic-
ular they have zero Lelong number at every point z € Amp («) (see [DN13,
Proposition 1.9]).

Definition 3.1.4. We define the energy of a 0-psh function ¢ as

1 Y Nl — 00, +00
Ey(p) = jZO/X—«o—vexTJAemm e - o0, +d]

n—+1

with T'= 0 + dd®p and Opmin = 0 + ddVy. We set
ENX,0) :={p € E(X,0) | Eg(p) < +00}.

We denote by E1(X, ) the set of positive currents in the class o whose global
potential has finite energy.

The energy functional is non-increasing and for an arbitrary 6-psh function

2
Ey(p) := sup Fy(¢) €] — 00, +0]
Y2

over all ¢ > ¢ with minimal singularities (see [BEGZ10, Proposition 2.8]).

3.2 Finite Energy Measures

Let X be a compact Kéahler manifold of complex dimension n and « be a
big class and 8 € a be a smooth representative. The following notion has
been introduced in [BBGZ13]:

Definition 3.2.1. A probability measure p on X has finite energy in « iff
there exists T € £1(X, a) such that

_ 1)
H= vol(a)”
In this case we write u € MA (£1(X, a)).

(3.2.1)
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The purpose of this note is to study the set MA (£'(X, «)) of finite energy
measures.

3.2.1 Some Criteria

Let us recall that a probability measure p having finite energy is necessarily
non-pluripolar (see [BBGZ13, Lemma 4.4)).

When (X, w) is a compact Riemann surface ( n = 1) then p = w+dd% €
MA (£Y(X, {w})) iff ¢ belongs to the Sobolev space W1?2(X). This follows
from Stokes theorem since

/X(—so)dMI/X(—sO)w+/deMdcsO-

We recall that a probability measure g has finite measure iff for any ¢ €

£1(X, 0)
X

where Vp is the #-psh function with minimal singularities defined in Section
3.1 (see [BBGZ13, Lemma 4.4]). In particular, this insures that the set of
measures with finite energy in a given cohomology class is convex, since given
w1, g2 € MA (EY(X, {6})), then clearly for any t € [0, 1],

[ == Vo) (e + 1= 1) < o

Let p,v be two probability measures such that 4 < v. An immediate
consequence of the above characterization is that p has finite energy in « if
so does v. We now give a techinical criteria to insure that a given probability
measure has finite energy.

Lemma 3.2.2. Assume w € « is a Kihler form. Let 1 € EY(X,w/2).
Assume there exists a constant A > 0 such that

< < Acap1+€
for some € > 0. Then u has finite energy in «.

By Cap,, we mean here the generalized Monge-Ampere capacity intro-
duced and studied in [DNL14a, DNL14b], namely for any Borel set £ C X,

Capy(E —Sup{/ MA (u u € PSH(X,w), w—lgugd)}.

Proof. We will follow the arguments in [DNL14a, Theorem 3.1]. We normalize
w such that [, w™ =1 and recall that given a probability measure f, there
exists a unique (up to constant) ¢ € £(X,w) such that

= (w+ddp)".
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Set
H(t) = [Cap,({p < v —t})]"", t > 0.

Observe that H (t) is right-continuous and H (+00) = 0 (see [DNL14a, Lemma
2.6]). It follows from [DNL14a, Lemma 2.7] that Cap, < 2"Cap,. Using
[DNL14a, Proposition 2.8] and the assumption on the measure MA (¢), we
get

PCamle<vt=sp < [ MAG)
o

AfCapy({p <v — )],

IN

We then get
sH(t 4 s) < AV"H(t)'*¢, vt > 0,Vs € [0,1].

Then by [EGZ09, Lemma 2.4] we get ¢ > ¢ — C, where C only depends on
A. This implies ¢ € £}(X,w) and so p € MA (XX, {w})). O

We stress that the above result still holds when w > 0 is merely semipos-
itive.

3.2.2 Measures with densities

Let a be a Kéhler class and w € « be a Kahler form. We consider probability
measures of the type u = fw" where the density 0 < f € L'(X). We
investigate under which assumptions on the density f, the measure p has
finite energy. We recall that by [GZ07] there exists a unique (up to constant)
w-psh function ¢ € £(X,w) solving

(w+dd)" = fw™. (3.2.2)

When f € LP(X) for some p > 1, it follows from the work of Kolodziej
[Kol98] that the solution of (3.2.2) is actually uniformly bounded (and even
Hélder continuous) on the whole of X. In particular, ¢ € £Y(X,w) that
means pu € MA (£1(X,{w})). In the following we consider concrete cases
when the density f is merely in L'(X).

If the density has finite entropy, i.e. fX flog f < 400, then the measure
has finite energy (see [BBEG11, Lemma 2.18]). As we will see in the sequel
this condition is very strong and it is not necessary.

3.2.3 Radial measures

We consider here radially invariant measures. For simplicity we work in the
local case but the same type of computations can be done in the compact
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setting. Let x : R — R a convex increasing function such that x'(—oo) =0
and x(t) = t for t > 0. Denote by |[|z|| = v/]21|? + ... + [22[? the Euclidean
norm of C”. Consider

p(2) = x o log ||z].
Then ¢ is plurisubharmonic in B(0,7) C C" with r > 0 small, and
o= (ddog)".

Observe that, giving a radial measure in B(0, r) is the same thing as giving a
positive measure v in the interval (0,r]. This means that p has fintie energy
if and only if

/OT [x(log p)|dv(p) < oco.

Smooth weights

Assume now that x : R — R is C2. Then, by a simple computation we get

cn (X 0 log || 2[)" X" (log ||2]))
[12]12"

p=(dd°o)" = fdV, with f(z)=

where dV' denotes the Euclidean measure on C". It turns out that u has
finite energy iff
—x olog||z||f(2)dV < +o0,
B(0,r)

that, using polar coordinates, is equivalent to

logr
/ —x(8) (X' (s)" X" (5)ds < +oo. (3.2.3)
—0oQ
Ezample. Consider x,(t) = —(—t)? with 0 < p < 1. Then the associated
radial measure fi, has finite energie iff p < nL—I—l

In [DDG™, Corollary 4.4], the authors have proven that the range of
MAH (X, w), the Monge Ampere operator of plurisubsharmonic Hélder con-
tinuous functions, has the LP property: if 4 € MAH (X,w) and 0 < g € LP(u)
for some p > 1 with [ gdpu = [ w™, then gu € MAH (X, w). One can won-
der whether MA (£'(X,w)), i.e. the set of finite energy measures, satisfies
such a property. This is not the case as the following example shows.
Let n > 1 and p = fw"™ = (w + dd°x o log ||z||)™ where x(t) := —(—t)%.
Then p € MA (£1(X,w)). We now consider g(z) = (—log|z||)™ ™+ and
observe that g € L%(u). But then gu ¢ MA (£(X,w)) since one can check
that

gu ~ (w =+ ddx1 o log || 2]])",

where x1(t) = — (=) "+ and then the integral in (3.2.3) is not finite.
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Remark 3.2.3. Consider H C X a smooth real hypersurface and set pps
the Lebesgue measure on H. Then it follows from [Zer04, Theorem 5.1] that
for any Borel set F C X

pnw(E) < Cap,(E)?,

where Cap,, is the classical Monge-Ampere capacity defined as
Cap,(FE) := sup {/ (w4 ddu)” | wePSHX,w) —1<u< O} .
E

Using Kotodziej’s approach [Kol98|, we then get that ugy € MAH(X,w). In
particular, uz has finite energy.

A concrete example is H = S?"~! € C". In this case ugzn—1 = MA (p)
where ¢ ~ log™ ||z and v(p) = d;.

3.2.4 Divisorial singularities

Let D = Zjvzl D; be a simple normal crossing divisor on X. Here ”simple
normal crossing” means that around each intersection point of k& components
Dj,,...,Dj, (k< N), we can find complex coordinates 21, ..., z, such that for
each [ = 1, ..., k the hypersurface D, is locally given by z; = 0. For each j, let
L; be the holomorphic line bundle defined by D;. Let s; be a holomorphic
section of L; defining D, i.e D; = {s; = 0}. We fix a hermitian metric h; on
L; such that |s;| := [s;|n; < 1/e. We say that f satisfies Condition C(B, a)
for some B > 0, a > 0 if

h
N 12(—1 JV1+a
Hj:l |s5]*(—log |s;)

where h € C*(X), 1/B < h < B.

f=

(3.2.4)

Proposition 3.2.4. Assume that f satisfies C(B,«) for some B > 0, a >
0.Then the following holds:

1. If a > 1/2, then p € MA (EY(X, {w})).
2. If a < 1/2, then u ¢ MA (£1(X, {w})).

Proof. When o > 1/2, by [DNL14a, Theorem 2] we can find ¢ € (1 — «,1/2)
such that
N
Y —ai(=loglsi))? — A < o,
j=1

where aj, A1 > 0 depends on B, «a, gq.
Note that the function u, = Z;VZI —aq(—log|s;])? if w-psh is a; > 0 is small
enough and that u, € £1(X, {w}), hence so does ¢.
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In the case a € (0,1), by [DNL14a, Proposition 4.4] we get that for each
0 <p<1—awe have

N
P <Y —as(—log|s;|)? + Ag,
j=1

where a, A2 > 0 depend on B, «,p. Denote u, = Zjvzl —as(—log|s;|)P.
Observe that if @ < 1/2, we can choose p € (1/2,1 — «) such that u, ¢
EY(X,w). Thus ¢ ¢ £Y(X,w) and hence the conclusion. What is missing is
the case a = 1/2. Consider u = Z;VZI —b(—1log|s;])/2, where b is a small
constant such that v € PSH(X,w). Then u ¢ £'(X,w) and we can find a
constant C' > 0 such that

MA (u) < N 20 3/2’
BTz [s*(~ log|s])

hence the conclusion. OJ

Remark 3.2.5. Observe that in this case the entropy condition, fX flog f <
400, is satisfied only for o > 1 although the measure has finite measure as
soon as a > 1/2.

3.3 (Non) Stability of Finite Energy Measures

A natural question that comes up is about stability of measures having finite
enegy. More precisely, given X,Y compact Kéahler manifolds of complex
dimension n, m, respectively, with m < n and f : X — Y a holomorphic
map, one can study the stability properties of finite energy measures under
I
It turns out that finite energy measures are invariant under biholomorphism
but not under bimeromorphism as we explain in Sections 3.3.1 and 3.3.2.
In the following we wonder whether this notion depends or not on the
cohomology class. In other words, given a, 8 big classes and a probability
measure p € MA (£1(X, a)), we ask whether u € MA (£X(X, 8)) or not.
We recall that by [BEGZ10, Theorem 3.1], there exists a unique positive
current S € £(X, ) such that

(s
vol(8)

Therefore the question reduces asking if S € £1(X, ) or not. It turns out
that this is false in general (see Counterexample 3.3.2). We obtain a positive
answer under restrictive conditions on the cohomology classes, i.e. «, 3 both
Kahler, as Proposition 3.3.1 shows.



3.3. (Non) Stability of Finite Energy Measures 55

3.3.1 Invariance property

Finite energy measures are invariant under biholomorphism. Indeed, if
f : X — Y is a biholomorphic map (in particular n = m) and o € H, l}{gl (X,R)
then

pe &YX, a) ifandonlyif foue XY, fia).

This is a consequence of the fact that if we write p = (T™) then fiu =

((feT)") and
Te&(X,0) = f.T &Y, fia),

(see [DN13]).

Proposition 3.3.1. Let a, 8 be Kdhler classes and p a probability measure.
Then

1€ MA (EY(X, ) <= p e MA (EX(X, B)).

Proof. Pick wy and we Kéhler forms as smooth representiatives of a and S,
respectively. We suppose 1 € MA (£1(X, a)) and we write

(w1 +dd°pp)"
vol(«)

We want to show that there exists 1, € (X, ws) such that p = W

By [GZ07, Theorem 4.2], it is equivalent to showing that (X, wq) C L(u).
We recall that since wi,ws are Kahler forms, there exists C' > 1 such that
w1 < Cws. Now, for all o € EY(X,ws), 1 <0,

/ )y = L / (—)(wn + ddip,)"
X X

vol(a)
1

vol(a)

/X(—w)(C’wg +ddp,)" < 400.

The finitess of the above integral follows from [GZ07, Proposition 2.5] and
from the fact that [DN13, Theorem 3.1] insures 1, ¢, € E1(X, Cw,). O

3.3.2 Non invariance property

The notion of finite energy for non pluripolar measures is not invariant
under bimeromorphic changing of coordinates. Indeed, the Example below
points out that u € MA (EY(X, {@})) but meu ¢ MA (E1(P2, { \wrs})) for
any A > 0.

More generally, Definition 3.2.1 depends on the cohomology class: in the
following we show that given «, 8 big classes, there exists a measure p such
that u € MA (£1(X,)) but u ¢ MA (XX, B)).
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Example 3.3.2. Let 7 : X — P2 be the blow up at one point p and set
E :=771(p). Let U be a local chart of P? such that p — (0,0) € U. Fix a
positive (1, 1)-current w’ on P? such that its global potential on U can be
written as en(z)log||z|| where 1 is a cut-off fucntion so that n = 1 on B,
n=0onU\B(2) and € > 0 is small enough. Then & := (7*w’ — [E]) + m*wrs
is a Kahler form and clearly @ > m*wpg. Let @ = {@} and 8 = 7*{wrs}
with vol(wps) = 1. On U we define

1
Pp = 577'Up_Kp
where u, := —(—log ||2]|)?, K, is a positive constant such that ¢, < —1 and
C > 0. Choosing C big enough ¢, induces a wpg-psh function on P2, sa
©¢p. For p = 5 — 6 with 6 > 0 small enough, we set

_ (@ + dd°m*p,)’
vol(@)

We will show that p ¢ MA (£1(X, 3)), or better that there exists a function
P € ENX, mwrs), ¥ < 0, such that Jx (=)dp = +oo (see [GZ07, Theorem
4.2]). We pick ¢ := m*@. with e = 2 — ¢/, § > 0 small enough. Observe that
Y € EYX, mwrs) but ¥ ¢ £1(X, D) (see [DN13, Example 3.5]). We claim
that [ (—7*@:) (@ + dd°m*@p)? = +o0. First note that on P\ {p},

vol(@)mept = (W' +wrs + dd°@p)?
> —C'whg + 2w A (wps + dd°Pp) + (wrs + dd°Pp)2.
Thus
3/ (—7*@:)dp = 3/ (—@e)dmep > (3.3.1)
X P2

_C,/p>2(_¢€)W%S+2/192(_¢E)M,A(WFSJFddC@P)+/IPQ(—S5E)(wFs+ddC¢p)2,
We infer that

/ |(—log |z[|)*| ddlog || z[| A dd®[x(log |z[])] = +o0  (3.3.2)
B(3)\{(0,0)}
where x(t) = —(—t)P, hence the conclusion. Indeed on B(3) \ {(0,0)},

ddlog||z|| A dd°[x(log ||z]|)] = ’4X "(log ||2]|)dz1 A dz1 A dzo A dZa

where A is postive constant. Therefore we have

1
dzy Ndzy Ndzo N\ dZs
/(§ M) [[2[1*] log ||| |*~P~=

/ —logp“”dp

ds = 400
/logls2 Tpe
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since 2 —p—¢e¢ < 1.

A similar computation (by replacing e by p) show that 7*¢, € £1(X,®) and
so i € MA (£1(X,a)) by construction. This proves (i) of Proposition B.
Note that (i7) follows form the computations in (3.3.1) and (3.3.2).






Chapter 4

Monge-Ampere equations on
quasi-projective varieties

Introduction

Let (X, w) be a compact Kidhler manifold of complex dimension n and let D be
a divisor on X. Let f be a non-negative function such that [ Jw" = S W
Consider the following complex Monge-Ampere equation

(w4 dd)" = fw". (4.0.1)

When f is smooth and positive on X, it follows from the seminal work of
Yau [YauT78] that (4.0.1) admits a unique normalized smooth solution ¢ such
that w+ddyp is a Kahler form. Recall that this result solves in particular the
Calabi conjecture and allows to construct Ricci flat metrics on X whenever
C1 (X ) = 0.

It is very natural to look for a similar result when f is merely smooth and
positive on the complement of D, e.g. when studying Calabi’s conjecture on
quasi-projective manifolds (see e.g. [TY, TY90, TY91] and [Heil2]) for recent
developments). The study of conical Ké&hler-Einstein metrics (Kéahler-Einstein
metrics in the complement of a divisor with a precise behavior near D) has
played a major role in the resolution of the Yau-Tian-Donaldson conjecture
for Fano manifolds (see [Don12],[DS12],[CDS12a, CDS12b, CDS13],[Tial2]).

However no systematic study of the regularity of solutions to such complex
Monge-Ampere equations has ever been done, this is the main goal of this
article. It follows from [GZ07] that (4.0.1) has a solution in the finite energy
class £(X,w) which turns out to be the unique one up to an additive constant
(see [Din09]). We say that the solution is normalized if supy ¢ = 0. The
problem thus boils down to showing that such a normalized solution is smooth
in X \ D and understanding its asymptotic behavior along D.

As in the classical case of Yau [Yau78] the main difficulty is in establishing
a priori C° bounds. Since, in general the solution ¢ is unbounded, the idea

99
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is to bound ¢ from below by some (singular) w-psh function.
Our first main result shows that the solution ¢ is smooth in X \ D when
f satisfies the mild condition Hs:

f= et“*d)" YT are quasi plurisubharmonic on X, %~ € L. (X \ D).

Let us stress that D is here an arbitrary divisor.

Theorem 1. Assume that 0 < f € C>°(X \ D) satisfies Condition Hy¢. Then
the solution ¢ is also smooth on X \ D.

The most difficult part is the C” estimate that relies on the following
result:

Theorem 2. Assume that f < e~? for some quasi-plurisubharmonic function
¢. Then for each a > 0 such that ap € PSH(X,w/2) there exists A > 0
depending on fX e~ 2e/9" such that

© > ap — A.

Remark. It follows from Skoda’s theorem [Sko72] that [, e~2#/ay" is finite
for all a > 0, since ¢ € £(X,w) has zero Lelong number at all points [GZ07].

In Theorem 1, the density f is only in L'(X) and there is no regularity
assumption on D. Hence we do not have any information about the behavior
of ¢ near D. If we assume more regularity on f and D, we will get more
precise C°-bounds.

Assume that D = Z;V:1 D; is a simple normal crossing divisor (snc for
short). For each j =1,..., N, let L; be the holomorphic line bundle defined
by D;. Let s; be a holomorphic section of L; such that D; = {s; = 0}. Fix
a hermitian metric h; on L; such that |s;] := |s;[n, < 1/e.

When the behavior of f near the divisor D looks exactly like

1

¥ , € (0,1]
Hj:l |55]?[ log ||+

we show in Proposition 4.3.4 and Proposition 4.3.5 that ¢(x) converges to
—o0 as x approaches D with precise rates. In particular there is no bounded
solution to (4.0.1).

h
Theorem 3. Assume [ = T o P Tog sy D where 1/B <h < Bon X,
then the following holds:

(a) if @ > 1 then ¢ is continuous on X, ¢ > —C, with C' = C(B, ).
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(b) if @ € (0,1) then for each 0 <p<1l—-aandeach 1 —a < ¢ <1, we
have

N N
—a1 » (—logls;)?— A1 < o < —az > _(—logls;|)P + Ag,
j=1 =1

where a1, A1 > 0 depend on B, «, ¢ while as, A3 > 0 depend on B, a, p.

(¢) if @« =1 and D is smooth then for any p € (0,1) there exist a, A > 0
depending on B,p and A, As > 0 depending on B such that

N

D Ay [log(—log|s;| + Az)] < ¢ < —a )y [log(—log|s;])]” + A.
j=1 J

It would be interesting to obtain (¢) when D is non smooth but our
method only yields the weaker estimate (b) in this case.

When f € LP(w") for some p > 1, it follows from the work of Kolodziej
[Ko198] that the solution of (4.0.1) is actually uniformly bounded (and even
Holder continuous) on the whole of X.

In our result, the density f is merely in L'. The first part of Theorem
3 says that when a > 1 the solution is continuous on X. Kolodziej’s result
[Kot98, Theorem 2.5.2] also applies for a > n but can not be applied to a
density f as above if a < n.

Observe furthermore that o = 1 is a critical exponent as is easily seen
when n = 1. In any dimension, when f has singularities of Poincaré type,

N L/o < f(2) £ =x ¢

[T;=1 Isil*[log|s;I? [T;=1 Isil*[log|s;|I?

along D we show in Section 4.3.3 that the solution is locally uniformly
bounded on compact subsets of X \ D and goes to —oo along D with a
certain rate. If moreover f has a ”very precise” behavior near D it follows
from the recent work of Auvray (see [Auvll]) that ¢ goes to —oo along
D like Z;V: | —log(—log |s;]). The assumptions needed in [Auvll] are very
restrictive while in our result we only need a very weak condition on the
density. Recall also that in [TY] the authors constructed ”almost complete”
Kéhler Einstein metrics of negative Ricci curvature on X \ D. In this case
the C° estimate follows easily from the maximum principle.

In order to prove the C’-estimate we follow and generalize Kolodziej’s
approach. We introduce and study the 1-Capacity of a Borel subset £ C X,

Cap,,(E) := sup {/E(w +dd°u)" | v € PSH(X,w), ¢ —1 <u < w}
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where ¢ € PSH(X,w) and here (w + dd°u)™ is the nonpluripolar Monge-
Ampere measure of u (see Section 4.1 for the definition). When 1 is constant,
1 = C, we recover the Monge-Ampere capacity,

Cap,, = Cap¢.

A similar notion has been studied in [CKZ05] in a local context. These
generalized capacities are interesting for themselves. In this paper we only
need some of their properties and refer the reader to [DNL14b] for a more
systematic study.

One of the advantages of the Kolodziej’s approach for the C° estimates
is that it also works in the case of semipositive and big classes as shown in
[BGZ08], [EGZ09] and [BEGZ10]. Thus it is not surprising that our method
is still valid in this situation.

Let 6 be a smooth semipositive form on X such that [ 0" >0. Let f be
a non-negative function such that [  Jut = | + 0. Consider the following
degenerate complex Monge-Ampere equation

(0 + dd°p)" = fw". (4.0.2)

It follows from [BBGZ13] that (4.0.2) admits a unique normalized solution
¢ € £(X,0). As in the Kéahler case, it is interesting to investigate the
regularity properties of ¢ if we know that the density f is smooth, strictly
positive outside a divisor D and verifies Condition H ;. We can not expect ¢
to be smooth on X \ D since # may be zero somewhere there. Our result
below shows that the solution is smooth on X \ (D U E), where E is an
effective simple normal crossing divisor on X such that {6} — ¢ (FE) is ample.

Theorem 4. Let (X,w) be a compact Kihler manifold of complex dimension
n and D be an arbitrary divisor on X. Let E be an effective snc divisor
on X, and 0 be a smooth semipositive form on X such that fX 0" >0 and
{0} — c1(E) is ample. Assume that 0 < f € C*°(X \ D) satisfies Condition
Hy. Let ¢ be the unique normalized solution to equation (4.0.2). Then ¢ is
smooth on X \ (DU E).

Remark. The condition we impose on {6} is natural in studying Kéhler
Einstein metrics on singular varieties (see [BG13]).

Let us say some words about the organization of the paper. In Section 4.1,
we introduce the generalized -Capacity, and establish their basic properties.
The proof of Theorem 1 will be given in Section 4.2. We provide some
volume-capacity estimates in Section 4.3.1. We then use these to prove
Theorem 2 and 3 and discuss about the asymptotic behavior of solutions
near the divisor in Section 4.3.2. Finally we consider the case of semipositive
and big classes in Section 4.4.
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4.1 Preliminaries

Let (X,w) be a compact Kéhler manifold. We first recall basic facts about
finite energy classes of w-psh functions on X. The reader can find more
details about these in [GZ07].

4.1.1 Finite energy classes

Definition 4.1.1. We let PSH(X,w) denote the class of w-plurisubharmonic
functions (w-psh for short) on X, i.e. the class of functions ¢ such that locally
@ = p + u, where p is a local potential of w and w is a plurisubharmonic
function.

Let ¢ be some (unbounded) w-psh function on X and consider ¢; :=
max(p, —j) the canonical approximation by bounded w-psh functions. It
follows from [GZO07] that

Lip;>—jy(w +dd°p;)"

is a non-decreasing sequence of Borel measures. We denote by (w + dd®p)™
(or MA (y) for short if w is fixed and no confusion can occur) this limit:

MA (p) = (w+dd°p)" = lim 1¢, 5 5w+ ddpj)".

j—+oo

It was shown in [GZ07] that the Monge-Ampeére measure MA (¢) puts no
mass on pluripolar sets. This is the non-pluripolar part of the Monge-Ampeére
of ¢. Note that its total mass MA (¢)(X) can take value in [0, [, w"].

Definition 4.1.2. We let £(X,w) denote the class of w-psh function having
full Monge-Ampere mass:

£(X,w) = {apePSH(X,w)\ /XMA(gp)—/Xw"}.

Let us stress that w-psh functions with full Monge-Ampere mass have
mild singularities. Indeed, it was shown in [GZ07, Corollary 1.8] that

v(p,z) =0,Vp € E(X,w), = € X.
We also recall that, for every ¢ € £(X,w) and ¢ € PSH(X,w), the

generalized comparison principle holds (see [BEGZ10, Corollary 2.3]), namely

/ (w+dd¢P)" < / (w+ ddp)".
{e<v} {e<v}

Let x : R— — R~ be an increasing function such that x(0) = 0 and
X(=00) = —oo.
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Definition 4.1.3. Let &, (X, w) denote the set of w-psh functions with finite
X-energy,

E(X,w) ={pe&(X,w) | x(~lgl) € L'(MA (¢))}.
For p > 0, we use the notation

EP(X,w) == & (X,w), when x(t) = —(—t)".

4.1.2 The -Capacity

Definition 4.1.4. Let ¢ € PSH(X,w). We define the ¥-Capacity of a Borel
subset £ C X by

Cap,(E) == sup{/EMA(u) | w e PSH(X,w), v —1 <u< ¢}.

Then the Monge-Ampere capacity corresponds to 1) = constant (see
[BT82], [Kol03], [GZ05]). We list below some basic properties of the -
Capacity.

Proposition 4.1.5. (i) If E1 C Ey C X then Cap,(E1) < Cap,(E2) .
(ii) If Ey, Es, ... are Borel subsets of X then

o0

+o0o
Cap, U E;| < Z Cap,, (E;).
j=1 j=1

(iii) If By C Ey C ... are Borel subsets of X then

oo
Cap,, U E;| = jEI—iI-loo Cap,,(Ej).
j=1

The following results are elementary and important for the sequel. We
stress that these results still hold in the case when w is merely semipositive
and big rather than Kéhler.

Lemma 4.1.6. Let ¢ € PSH(X,w) and ¢ € E(X,w). Then the function
H(t) = Capy({p <¢ —1}), t R,
is right-continuous and H(t) — 0 as t — +o0.

Proof. The right-continuity of H follows from (iii) of Proposition 4.1.5. Let
us prove the second statement. We can assume that ¥ < 0 on X. Fix
v € PSH(X, w) such that ¢ — 1 < v < 1. We apply the comparison principle
to obtain

/ MA (v) S/ MA (v) §/ MA ().
{e<y—t} {p<v—t+1} {p<—t+1}

The last term goes to zero as t goes to 400 since ¢ € £(X,w). O
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Lemma 4.1.7. Let (X,w) be a compact Kihler manifold and ¢ € PSH(X,w/2).
Then we have

Cap,,/o(E) < Cap,(E).

Here, Cap,,/, is the Monge-Ampere Capacity with respect to the Kéahler
metric w/2 introduced in [Kot03] and studied in [GZ05], and Cap,, is the
generalized -Capacity with respect to the Kahler metric w.

We stress that the above result insures Cap,,(E) > 0 for any Borel subset
FE which is not pluripolar.

Proof. Let u € PSH(X,w/2) be such that —1 <« < 0. Then ¢ := ¢ +u
is a candidate defining Cap,,. Using the definition of the Monge-Ampere
meausure it is not difficult to see that

/ (/2 + dd°u)" < / (w + ddp)" < Capy(E),

E E

and taking the supremum over all u© we get the result. O
The following result generalizes Lemma 2.3 in [EGZ09].

Proposition 4.1.8. Let ¢ € £(X,w), ¢ € PSH(X,w). Then for allt >0

and 0 < s <1 we have

anap¢({cp<1/)—t—s})</{ » t}MA(gp).
p<th—

Proof. Let u € PSH(X,w) such that ¥y — 1 < u < 1. Observe the following
trivial inclusion

{p<p—t—stC{p<sut+(l—s)p—t} C{p<yp—t}.

It thus follows from the generalized comparison principle (see [BEGZ10,
Corollary 2.3]) that

s”/ MA (u) < / MA (su+ (1 — s)1))
{p<th—t—s} {p<th—t—s}

< MA (su + (1 — s)1))

Ag&<su+(1—s)¢—t}

< / MA ().
{e<yp—t}

By taking the supremum over all candidates u we get the result. O

4.2 Smooth solution in a general case

In this section we prove Theorem 1. The most difficult part is the C° estimate
which follows from Theorem 4.2.1 below.



66 Monge-Ampeére equations on quasi-projective varieties

4.2.1 Uniform estimate

In this subsection we assume that 0 < f € L'(X) is such that [y fw" =
Jxw™. Let ¢ € £(X,w) be the unique normalized solution to

(w4 dd°p)" = fw". (4.2.1)

Here we normalize ¢ such that supy ¢ = 0. We prove the following C°
estimate:

Theorem 4.2.1. Assume that f < e~? for some quasi-plurisubharmonic
function ¢. Let ¢ € E(X,w) be the unique normalized solution to (4.2.1).
Then for any a > 0 such that ap € PSH(X,w/2), there exists A > 0
depending only on fX e~ 2plagym such that

w > ap — A.

Moreover, if ¢ is bounded in a compact subset K C X then @ is continuous
on K.

Remark 4.2.2. We stress here that our estimate above makes sense. Indeed,
it follows from [GZ07] that all functions in £(X,w) have zero Lelong number
at all points of X. Then by Skoda’s integrability theorem we know that e~ 5%
is integrable for every B > 0 and every ¢ € £(X,w). We stress also that the
constant in our estimate only depends on an upper bound of [ x e~2e/a

Proof. We can assume that ¢ < 0. Fix a > 0 such that ¥ := a¢ belongs to
PSH(X, w/2). It follows from Lemma 4.1.7 that Cap,, < 2"Cap,,/, < 2"Capy.
Fix s € [0,1], t > 0 and apply Proposition 4.1.8 to get

s"Capy(p <9 —t—s) < /{ o MA (¢). (4.2.2)
p<th—

By assumption on f we have

/ MA (p) S/ e~¥/2eV/NMA (o) S/ e~¥/9",
{p<ip—t} {p<i—t} {p<ip—t}
(4.2.3)

It follows from [GZ05] that

—C4
vol, < exp Un |-
Capy

Thus using Holder inequality we get from (4.2.2) and (4.2.3) that

s"Cap, (¢ <P —t—s5) < Cy (Cap,(p < b — t))2 < (4 (Capw(go < — t))Q,
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where C3 depends only on [ X e~2¢/a™ . Now, consider the following function

1/n
H(t) = [Cap,({p < ¢ —t})]"", t> 0.
By the arguments above we get
sH(t+s) < C4H(t)?, Yt > 0,Vs € [0,1],

where Cy > 0 depends only on [ x e~2¢/ayn Tt follows from Lemma 4.1.6
that H is right-continuous and H(+o00) = 0. Thus by [EGZ09, Lemma 2.4]
we get ¢ > ¢ — C5, where C5 only depends on [y e~2¢/ayn  Indeed, the
constant C5 can be made very precise as follows. It follows from [EGZ09,
Lemma 2.4] that there exists t such that H(t) = 0if ¢ > t. Here, we can
take

too = 2+ S0,

where sg > 0 is big enough such that

1
H < —.
(SO) - 204
By using Hélder’s inequality it follows from (4.2.2) (take s = 1) and (4.2.3)
that
1/2 1/2
H(t—i—l)n < (/ 6—290/awn> (/ wn)
X {p<tp—t}
12 /4 1/2
< </ chp/awn) (/ (—(,0)0.)”) )
X tJx

The last integral is bounded by a uniform constant since ¢ is normalized by
supy ¢ = 0 (see [GZ05]). From this we can choose sg > 0 depending only on
an upper bound of fX e~ 2elagyn,

Now, assume that ¢ is bounded on a compact subset K C X. Set ¢ := a¢
as above. Let us prove that ¢ is continuous on K. For convenience, we
normalize ¢ so that supy ¢ = —1. Let 0 > ¢; be a sequence of continuous
w-psh functions on X decreasing to ¢. Fix A € (0,1). For each j € N set

Wi = A+ (1= A — (1 — N)A—2(1 - \).

Then 1); belongs to PSH(X, %w) and ¥; < ¢; —2(1 — X). Set

1/n
Hj(t) = [Cap%_ e <wj—th)| " t>o0.
We can argue as above and use Proposition 4.1.8 to get

sH;(t+s) < C1H;(t)?, ¥t >0, Vs € [0, 1],
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where C7 > 0 depends on fX e~2¢/(0=Na_ et y : R~ — R~ be an increasing
convex weight such that x(0) = 0, x(—o00) = —oo and ¢ € &, (X,w). By the
comparison principle we also get

(1= A)"Capy, (9 < ¥)) < / MA@)s/’ MA (p)
{o<ej+1-A} {w<p;j—(1-2)}

1

Y E ey /X(—X o (¢ —@j)) fw".

The latter converges to 0 as j — 400, since ¢; decreases to ¢. Thus for j
big enough we have H;(0) < 1/(2C4). It then follows from [EGZ09, Remark
2.5] that H;(t) = 0 if t > tc where toc < C2H;(0) and Cy depends on Cf.
We then get

= Apj+ (1 =Xy — (1= A)(A+2) - C2H;(0).

Now, letting 7 — +o00, we get

lim inf(p — @;) > (A —1)(sup [¢| + A +2).
Jj—+oo K K

Finally, letting A — 1 we get the continuity of ¢ on K. O

4.2.2 Laplacian estimate
The following a priori estimate generalizes [Pau08].

Theorem 4.2.3. Let pu be a positive measure on X of the form p =
eV =T W where T, ™ are smooth on X. Let ¢ € C°(X) be such that
supx ¢ = 0 and

(w4 ddp)" = VYW,

Assume given a constant C > 0 such that

ddy* > —Cw, supyt < C.
X

Assume also that the holomorphic bisectional curvature of w is bounded from
below by —C. Then there exists A > 0 depending on C and fX e~ 204CH) g n
such that

0<n+Ayp < Ae~ 2V,

We follow the lines in Appendix B of [BBEG11]. We recall the following
result:

Lemma 4.2.4. Let o, 3 be positive (1,1)-forms. Then

n n

n(;JiSHM®§n<;)-mAMW”-
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Proof of Theorem 4.2.3. Set w, := w + dd°p. Since the holomorphic bisec-
tional curvature of w is bounded from below by —C, it follows from Lemma
2.2 in [CGP11] that

tr, (ddeyt — ddop™)
try (wy)

Ay, logtry, (wy) > — Ctry, (w). (4.2.4)

Since dd“y* > —Cuw, using the trivial inequality n < tr,,(wy,)try, (w) we thus
get from (4.2.4) that

tr, (Cw + dd“™)
B try, (wy)

Ay, logtry,(wy) > — Ctry, (w)
Ay~

tr, (we)

> —2Ctry, (w) (4.2.5)

By assumption we have 0 < Cw + dd“y~ < try,, (Cw + dd“y~ )w,. Applying
tr,, to the previous inequality yields

Cn+ AY™ < (Ctry, (w) + Ap, 7 )ty (wy),

and hence
—AYT > —(Ctry, (w) + Ay 17 )trw(wy).

Thus, plugging this into (4.2.5) we obtain
Ay, logtry(wy) > —3Ctry, (w) — Ay, 7. (4.2.6)
We want now to apply the maximum principle to the function
H :=logtry(wy) + 29~ — (1 +4C)p,

Let zg € X be such that H achieves its maximum on X at xg. Then at zg
we get

0>A,H > tr,,(w)—n(l44C).
Furthermore, by Lemma 4.2.4 we get
1 (wy) () < ne?” " (wp) (trw, ()" (o) < Are? ¥ (xq),
and hence, since supy ¢+ < C,
log try, (wy) (z0) < log Ay + ¢ (z0) — 9™ (w0) < Az — 9™ (w0) -
It follows that

H(z) < H(zo) < A3+ (x0) — (1 +4C)p(z0).



70 Monge-Ampeére equations on quasi-projective varieties

By assumption and the C° estimate in Theorem 4.2.1 we have ¢ > a)™ — Ay,
where @ = 1/(4C + 1) and A4 depends on C' and [y e~2#/%w". Thus

log try, (wy) < As — 207

We finally infer as desired

try,(wy) < Age 2% .

We are now ready to prove Theorem 1.

4.2.3 Proof of Theorem 1

Let ¢ € £(X,w) be the unique normalized solution to
(w4 dd°p)" = fw".

By assumption we can write log f = T — ¢, where ¥ are quasi psh
functions on X, ¢~ is locally bounded on X \ D, and there is a uniform
constant C' > 0 such that

ddy* > —Cw, supyt < C.
X
We now approximate 1)+ by using Demailly’s regularization operator p.. We
recall the construction: if u is a quasi-psh function on X and € > 0 we set
1
pe)) = o [ ulexph (O (6P/2) dA(Q).
€ CETX,z

Here x € C*(R) is a cut-off function supported in [-1,1], [ x(t)dt =1, and
exph: TX — X, (¢~ exph,(()

is the formal holomorphic part of the Taylor expansion of the exponential
map defined by the metric w. For more details, see [Dem92]. Observe that by
Jensen’s inequality, p.(e") > eP<(W) Applying this smoothing regularization
to ¥+ we get, for € > 0 small enough,

ddp.(hF) > —Chw, ePsVT V7)< gmpeT)+CL

where C; depends on C' and the Lelong numbers of the currents Cw + dd“y)™.
Now, for each ¢ > 0, it follows from [YauT78] that there exists a unique
e € C°(X) such that supy ¢ = 0 and

(w + ddcgps)n — cseps(w“')fpg(dﬂ_)wn = fw",
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where ¢. > 0 is a normalization constant. Since e?=(°8f) converges point-wise
to f on X and since er=(08f) < pg(elogf), by the General Lebesgue Dominated
Convergence Theorem we see that ef<(1°8f) converges to f in L'(X) as & — 0.
This implies that c. converges to 1 as ¢ —+ 0. Then we can assume that
ce < 2. Thus we get the following uniform control

f. < e~ Pe(¥7)+C2

By Lemma 4.2.5 below we know that . converges to ¢ in L*(X). Thus the
set

U={p: | e>0}U{p}

is compact in L'(X). Then it follows from the uniform Skoda integrability
theorem (Lemma 4.2.6 below) that for any A > 0 we have

sup/ e AW < oo
e>0JX

Thus, we can apply Theorem 4.2.3 to find C3 > 0 under control such that

Aype < C3€_Q¢ .

Fix a compact K € X \ D, k > 2 and 8 € (0,1). Now since 0 < f €
C*(X \ D) we have uniform controls on the derivatives of all orders of log f.
on K. Using the standard Evans-Krylov method and Schauder estimates we
then obtain

lpellers () < Crpe-
This explains the smoothness of ¢ on X \ D.

Lemma 4.2.5. Let (X,w) be a compact Kdhler manifold of dimension n. Let
(fj) be a sequence of non-negative functions on X such that fX fiw" = fX w™.
Assume that f; converges in L'(X) and point-wise to f. For each j, let
; € E(X,w) be the unique normalized solution to MA (¢p;) = fjw™. Then
@; converges in LY(X) to ¢ € E(X,w) the unique normalized solution to
MA (¢) = fw".

Proof. We can assume that ¢; converges in L'(X) to ¢ € PSH(X,w). It
follows from the Hartogs lemma that supy ¢ = 0. For each j € N set

Pj = (sup g0j> and u; := max(¢j, ¢ — 1).
k>j

Then we see that ¢; | ¢ and u; | u := max(¢p, o — 1) € £(X,w). We also
have that supy u = 0. It follows from the comparison principle that

MA (u;) 2 min <f> Inf fk> W' = gjw".
27
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By the continuity of the Monge-Ampere operator along decreasing sequences
in £(X,w) we get
MA (u) = lim MA (u;) > 1 w™ = fw".
(u) = Tim MA (u;) > lim g;w" = fw
Then the equality holds since they have the same total mass. Finally, by the
uniqueness result in the class £(X,w) (see [Din09]) we deduce that u = ¢,
which implies that ¥ = . The proof is thus complete. O

By [GZ07], functions in £(X,w) have zero Lelong number at every point
on X. Thus the following lemma is a direct consequence of the uniform
Skoda integrability theorem due to Zeriahi [Zer01]:

Lemma 4.2.6. Let U be a compact family of functions in E(X,w). Then
for each C1 > 0 there exists Cy depending on C1 and U such that

/ e~ 1P < Oy, Vo € U.
X

4.3 Asymptotic behavior near the divisor

In Theorem 4.2.1 we have given a very general CY estimate. We only assumed
that the density f is bounded by e~? for some quasi plurisubharmonic
function ¢, and there is no regularity assumption on D. It is therefore
natural to investigate the asymptotic behavior of the solution near D when
we have more information about D and about the behavior of f near D.

Let X be a compact Kéahler manifold of dimension n and let w be a
Kéhler form on X. Let D = Z;VZI D; be a simple normal crossing divisor
on X. Here ”"simple normal crossing” means that around each intersection
point of k components D, ..., Dj, (k < N), we can find complex coordinates
21, ..., Zp such that for each [ = 1, ..., k the hypersurface Dj, is locally given
by z; = 0. For each j, let L; be the holomorphic line bundle defined by D;.
Let s; be a holomorphic section of L; defining Dj;, i.e D; = {s; = 0}. We fix
a hermitian metric h; on L; such that |s;] := [sj|n, < 1/e. We say that f
satisfies Condition S(B, «) for some B > 0, > 0 if

f= N 2 : 1+a’
[T;=; Isj[*(—log s;])

(4.3.1)

4.3.1 Volume-capacity domination

Lemma 4.3.1. Assume that f satisfies (4.3.1) for some B > 0, > 0. Then
for each 0 < v < o we can find A > 0 which only depends on B, a,y,w such
that

voly(E) := / fw" < ACap,(E)?, VE C X,
E

where Cap,, is the Monge-Ampére capacity introduced in [Kot03], [GZ05].
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Before giving the proof of the lemma, let us recall the definition and basic
facts about Cegrell’s classes. We refer the reader to [Ceg98, Ceg04] for more
details.

Let © be a bounded hyperconvex domain in C™. The class £y(2) consists
of bounded psh functions which vanish on the boundary and have finite total
mass.

We say that u € EP(Q2),p > 0 if there exists a sequence (u;) C ()
decreasing to u such that

sup [ (-uy)P ()" < +oc.
7 Q

A function u belongs to F () if there exists a sequence (u;) C & (§2) decreas-
ing to u such that

sup/ (ddu;)" < +o0.
J Q

We recall the local Monge-Ampere capacity introduced in [BT82]: for any
Borel subset EF C €2, we define

Cappr(E, ) :=sup {/ (dd°u)™ | wePSH(Q), -1 <u< 0}.
E
The relative extremal function of £ with respect to €2 is
up=sup{u € PSH(Q) | u<0onQ, u<—1lonE}.

Proof of Lemma 4.3.1. Tt follows from [Kol03] that Cap,, is comparable to
the local capacity Capgr(-,§2), where € is an open subset contained in a
local chart. By considering E a small subset contained in a local chart we
reduce the problem to showing that

voly(E) < ACapgr(E,D™)*,VE € D} € D, (4.3.2)

where D" is the unit polydisk in C", é > 0 small enough and fixed, and

1
9(2) = g(21, .y 2n) = k<n
[Ty |22(1 = log |z]) 1 +e

We prove (4.3.2) by induction using the ideas in [ACK'09]. We start
with the case n = 1. Set E, := ENdD;, for any r € [0,t]. Define now
E :={r € [0,t]| E, # 0} and denote by [(F) the length of E. Since the
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function r — is non-increasing when r is small, we obtain

-1
r(l—logr)l+«

2 drdf
/Eg(Z)dV(Z) - / /ET l—logr 1+a

U(E) dr
< 2 —_
- 77/0 r(1—logr)ite

C

(—logl(E))™
< Cy [Cappr(E, D),

where the last inequality follows from [Kol94, p.1336]. Assume that the
result holds for n — 1. Let us prove it for n. Without loss of generality we
can assume that E is compact in D". We can also assume that k = n (if
k < n the situation is much easier). Set h = hJ, . the relative extremal
function of . Consider 7

1 1
y g —1(2) = — :
[ loglupia * " [T=E 2P (1 — log [55]) 1+

In(w) ==
" lw|?(
For each w € D set

By ={2eD" | h(z,w) < -1} and hy, = h(-,w).

By induction hypothesis we get
vl (B) = [ vol,, \(B)gn(w)dVa(w)
D

< Al/D[CapBT(Ew,]D)”1)]7gn(w)dV(w).

Fix now w € D and denote by u = h*Ew’D the relative extremal function of E,,.
Since h € F(D") it follows from [ACK 09, Theorem 3.1] that h,, € E(D"1).
We also have h,, < u and h,, = —1 on E,,. Using integration by parts we get

Capgp(Ew, D) < /D (Fha)(ddew)
= /]D)n—l(_hw)(ddchw)n_l =: —p(w).

By [ACK ™09, Theorem 3.1] we know that ¢ € F(ID). Moreover, we also have
¢ > —Ap for some universal constant Ay (here Ay depends on §). Indeed, let
v be the relative extremal function of D} with respect to D". Since h > v,
it is easy to see that for each w € D, hy, > vy,. From this we get a uniform
lower bound for ¢. Since E' is compact in D" we also get

p= [ o= [ (@) = Capyy(E.D"),
]D) n
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Thus, using the previous part (when n = 1) we obtain
Wl (B) < A [ (o) (i)
D
Ao
= A2/ 7 voly, (¢ < —t)dt
0

Ao

< AS/ t’yfﬂlfllu]gldt
0

= Ay[Cappr(B, D))

Here, we choose 51 < 7 so that the integrals converge. In the above we have
used the fact that

1
Cappr(v < —t) < t/ ddv, Yv € F(D), Vt > 0.
D

Since 1 can be chosen arbitrarily near v (and the constant A4 will increase),
the result follows. O

When o = 1 we get the following estimate.
Lemma 4.3.2. Let p = fw", f = 1 . Then there exists

[T Isj[2(—log]s; )2
A > 0 such that for every Borel subset E C X we have

u(E) < A-[n+ (—logn)"Cap,(E)], Vn € (0,1/e). (4.3.3)

Proof. We only give a sketch of the proof since it is essentially a copy of the
proof of Lemma 4.3.1 with a small change. We also use the same notation
as there. Without loss of generality we can assume that £ € D} € D" for
some small fixed . The function ¢ belongs to F(ID). The same arguments
as in Lemma 4.3.1 show that ¢ is also bounded from below by —A; for some
universal constant A7 > 0. In the final step we get

voly(E) < AQ/D(T)—F(—logn)”l(—go(w))) gn(w)dVa(w)

Ay
= Asn+ Az(—logn)"l/ volg, (¢ < —t)dt
0

Ay
< Asn+ Am?(—logn)" !t + As(—logn)" _ Cap,(p < —t)dt
n
Ay 1
< v+ As(-logn) [ 15 [ / dd%o] it
7]2 t D
<

Agn + A7(—log n)”/ ddep.
D
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Lemma 4.3.3. Let ¢ € £(X,w) be such that supy ¢ = 0 and assume
w=MA (¢) < ACap,, for some A > 0. Then there ezists C,c > 0 depending
on A such that

Cap,,(p < —t) < Ce ™, Vt > 0,

In particular, if B < c then [y e #¢du < C', with C' = C(B,A) > 0.

Proof. Fix s,t > 1. By standard application of the comparison principle we
get

1 n
Cap,(p < —t—3s) < / (w + ddcap> (4.3.4)
{p<—t} $

1 n
— Z CF(s — 1)Fwk A wg_k
ST Jp<—t} k=0

27’1
{p<—t} S Jp<—t}

where the last inequality follows from the partial comparison principle (see
[Din09, Theorem 2.3]). It follows from [GZ05] that

/ Wwh < Cre” ™, a > 0.
{p<~t}

Choose s := 2" Ae and fix ¢ < min(1,a,1/s). Set

IN

F(t) := e'Cap,(p < —t), t > 1.
Now, since p < ACap,,, from (4.3.4) we get
F(t+s) < Cy +bF (1),

where b = 2"Ae®*/s < 1. This yields sup;»; F'(t) < Cs, for some C3 > 0
depending on A. We finally get

Cap,(p < —t) < Ce ™ c<e.

The last statement easily follows since it follows from [BGZ08, Lemma 2.3]
that

/ MA (p) < t"Cap,, (¢ < —t), Vt>1.
{w<—t}

4.3.2 Proof of Theorem 3

Assume in this section that f satisfies Condition S(B, «) for some B > 0, >
0. We consider three cases depending on the value of a.
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The case when o > 1

The continuity of ¢ and the CY estimate follow directly from Lemma 4.3.1
and Kolodziej’s classical result (see [Ko198]).

The case when 0 < aa < 1

Fix e (l—a,1)and set 6 =a+  —1, and

log|sj ,

uMz

where a > 0 is small enough so that ug € PSH(X,w). By Theorem 4.2.1 we

have
N

0> logls;| — Co,

j=1

for some positive constant Cy depending on B. By simple computations we
obtain

Crfipw"
(—p)° 7

for some positive constant C'; depending on Cy. Here for each r > 0, we set

MA () <

fri= 1
T35 [s[2(—log )+
We also get
C1fi_pw™
MA —C) > ——F——,

where Cy > 0 depends on C1,6. The comparison principle yields that
@ > ug — Co.

The case when v =1

Assume D is a smooth divisor. Consider the model function

N

)= —A1 ) log(—log|s;| + A),
j=1

where A; > 0 is big and Ag is chosen so that v is w/2-psh on X. From the
first step in Lemma 4.3.1 we get that there exists a constant A > 0 such that
volf(E) < ACap,(FE), for any E C X. Then it follows from Lemma 4.3.3
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that fX e~ fw™ < (7 for some small constant ¢ > 0 depending on B. Here
C1 depends on ¢ and B. Thus, for t > 0, p > 1, by Holder inequality we get

/ MA (p) < / e~ CP/PCV/P fiyn
{p<yp—t} {p<tp—t}

1/p 1=1/p
</ e—capfwn> (/ ecw/(P—l)fw”)
X {p<y—t}
Cy (Capy(p < — )7,

where v < Aj¢/p+ (p—1)/p and Cy > 0 is a universal constant. The last
inequality follows from the volume-capacity domination (Lemma 4.3.1) and
from Lemma 4.1.7. Now if Ajc > 1 we can choose v > 1 and the result
follows as in Theorem 4.2.1.

IN

IN

4.3.3 Regularity near the divisor D

In this subsection we will discuss about the behavior of the solution to
equation (4.0.1) near the divisor D. We prove the following result when
a<1.

Proposition 4.3.4. Consider f = o, |sj|2(flog|sj|)1+a’ where 1/B < h <
B on X and o € (0,1). Assume that f is normalized so that [ fw™ = [y w™.
Let p € E(X,w) be the unique normalized solution of (4.0.1). Then for each
O<p<l—aandeahl—a<q<1, wehave

N N
—a1 Y (—log|s;[)1— Ay <@ < —ap Y (—log|s;|)” + Ag,
j=1 j=1

where a1, A1 > 0 depend on B, «a,q while as, Ay > 0 depend on B,a,p. In

particular, the solution ¢ goes to —oo on D.

Proof. One inequality has been proved in Section 4.3.2. Let us prove the
upper bound. We normalize ¢ such that supy ¢ = —1. Fix p € (0,1 — )
set :=(1—a—p)/p>0.

Consider u, := — Zévzl az(—log |s;|)?, where as > 0 is small so that u, is
w-psh on X. Then we can find C3 > 0 such that
C’gfw”
MA (u,) < ,
P (—up)?

while since ¢ < 0, for some Ay > 0 big enough (for instance A3 = C3) we

have
C3 fw”

(—p+ Ag)"
The comparison principle then yields the desired upper bound. ]

MA (o — Ag) >
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In the same way we obtain a similar upper bound when o = 1.

Proposition 4.3.5. Assume that f is normalized so that fX fw" = fX w™

and
1

>
iy N .
BTz Isjl*(—log]s;])

Let ¢ € E(X,w) be the unique normalized solution of (4.0.1). Then for any
p € (0,1) there ezist a, A > 0 depending on B,p such that

f

p < —a)_[log(—log|s;|)” + A.
j

In particular, ¢ is not bounded and goes to —oo on D.

Proof. The proof uses the same arguments as in Proposition 4.3.4. O

4.4 The case of semipositive and big classes

In this section we prove Theorem 4. For convenience let us recall the setting.
We assume that (X,w) is a compact Kéhler manifold of dimension n and D
is an arbitrary divisor on X. Let FF = Z;‘il a;jF; be an effective snc divisor
on X. Let 0 be a smooth semipositive form on X such that fX 0™ > 0 and
{0} — c1(E) is ample. Consider the following degenerate complex Monge-
Ampere equation

(0 + ddp)" = fw", (4.4.1)

where 0 < f € L'(X,w") satisfies the compatibility condition [ ¢ fut =
Jy o
For each j = 1,..., M let K; be the holomorphic line bundle defined by Ej.
Let o; be a holomorphic section of K; that vanish on E;. We fix hermitian
metric hj on K; such that |o;| < 1/e. Since {6} — ¢1(E) is ample, we can
assume that
0+ dd°¢ = wo + [E],

where wqg is a Kahler form on X and
M

¢ = Zaj log |oj].
j=1

By rescaling w we can also assume that wg > w. Recall that f satisfies
Condition Hy on X, i.e. there is a constant C' > 0 such that

f=e" "V, ddyt > —Cuw, sup Yt <O, YT e L (X\ D). (4.4.2)
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4.4.1 Uniform estimate

The following C%lower bound can be proved in the same ways as we have
done in Theorem 4.2.1:

Theorem 4.4.1. Assume that D, E and 0 are as above and [ satisfies
(4.4.2). Let @ be the unique normalized solution to equation (4.4.1). Then ¢
1s uniformly bounded away from D U E. More precisely, for any a > 0 there
exists A > 0 depending on C' and fX e~2¢/a," such that

p=ap” +¢—A
Proof. Fix a > 0 very small so that
1
¥ 1= ay” + ¢ € PSH(X, 0/2).
It follows from Proposition 3.1 in [EGZ09] that
—C,

Cape/2} .

vol, < C7 exp

I

for some universal constants C7,Cs > 0. Now, the same proof of Lemma
4.1.7 yields
Capg/y < Capy,

where Cap,, is the generalized capacity defined by the form 6 and 1:

Capy (E) := sup{/E(9+ddcu)” ’ uwe PSH(X,0), v —1<u< ¢}.

Then we can repeat the arguments in the proof of Theorem 4.2.1 to get the
result. ]

4.4.2 Laplacian estimate

We now prove a C? a priori estimate in the semipositive and big case. Even
when f is smooth on X, ¢ is only smooth in the ample locus of 6. To get
rid of this, we replace 0 by 6 + tw, t > 0. In principle, the C? estimate will
depends heavily on ¢ > 0 and we will have serious problem when ¢ | 0. But,
fortunately, the so-called Tsuji’s trick (see [Tsu88]) allows us to get around
this difficulty. In the sequel, we follow essentially the ideas in [BEGZ10].

Theorem 4.4.2. Let f = e’ V" where YT ,~ are smooth on X. Fix
t € (0,1). Let ¢ € C®°(X) be the unique normalized solution to

(0 + tw + dd°p)" = VYT,
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Assume given a constant C > 0 such that

ddy* > —Cw, supyt < C.
X

Assume also that the holomorphic bisectional curvature of w is bounded from
below by —C'. Then there exists A > 0 depending on C and [ e2(4C+1)p
such that

Aw()o < A672w77(40+1)¢>.

Proof. Ignoring the dependence on ¢, we denote w,, := 0-+tw+dd°p. Consider
the following function

H :=logtry(wy) + 29~ — (4C + 1)(¢ — 9),

Since ¢ goes to —oo on E, we see that H attains its maximum on X \ F at
some point xg € X \ E. From now on we carry all computations on X \ E.
We can argue as in Theorem 4.2.3 to obtain

Ay, logtry,(wy) > —3Ctr,, (W) — Ay, Y. (4.4.3)

Since wp + tw > w we get

Au, (= @) < trw, (Wy — wo — tw) < n — try,, (w). (4.4.4)
Therefore, from (4.4.3) and (4.4.4) we deduce that on X \ E

Au,H > try, (w) —n(4C +1).
We now apply the maximum principle to the function H at xg:
0> Ay, H(zg) > try, (w)(zo) — n(4C + 1).
Furthermore, by Lemma 4.2.4 we get
tr(we) (20) < ne?” =Y (o) (tru, ()" (20) < Are? " (x0),
and hence, since supy ¢+ < C,
log tr, (wy) (o) < log A1 + 9™ (z0) — ¢ (w0) < Az — ¥ (w0) -
It follows that
H(z) < H(zo) < A2 + ¢ (z0) — (4C 4+ 1)(¢ — ¢)(20).

By assumption and the C° estimate in Theorem 4.4.1 we have
- —A
wori? te A

where Az depends on C and fX e 2(1C+De,n - Thus

log try,(wy) < Ay — 29~ + (4C + 1)(¢ — 9).

p =

We finally get
try (wy) < Age” 2" —(C+De,
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Proof of Theorem 4. We proceed as in Section 4.2.3. We also borrow the
notations there. Let p.(1)*) be the Demailly’s smoothing regularization
of ¢*. For each £ > 0 it follows from [Yau78] that there exists a unique
s € C*°(X) such that supy ¢ = 0 and

(0 + ew + ddp.)™ = ceel= )Py

where ¢, is a normalization constant. As in Section 4.2.3 we have a uniform
control on the right-hand side:

coePe W =pe(¥7) < (O

Now, we can copy the arguments in Section 4.2.3 since our uniform estimate
and laplacian estimate do not depend on . The proof is thus complete. [J



Chapter 5

Generalized Monge-Ampere
Capacities

Introduction

Let (X,w) be a compact Kéhler manifold of complex dimension n and let D
be an arbitrary divisor on X. Consider the complex Monge-Ampeére equation

(w+dd)" = fw", (5.0.1)

where 0 < f € L*(X) is such that [, fw" = [, w™. It follows from [GZ07]
and [Din09] that equation (5.0.1) has a unique normalized solution in the
finite energy class £(X,w). We say that the solution ¢ is normalized if
supy ¢ = 0.

If f is strictly positive and smooth on X, we know from the seminal
paper of Yau [Yau78] that the solution is also smooth on X. Recall that this
solves in particular the Calabi conjecture and allows to construct Ricci flat
metrics on X whenever ¢1(X) = 0.

Given f positive and smooth on X \ D, it is natural to investigate the
regularity of the solution. In [DNL14a] we have proved in many cases that
the solution ¢ is smooth in X \ D.

As in the classical case of Yau [YauT78], the most difficult step is to
establish an a priori C°-estimate. This estimate is much more difficult
in our situation since in general the solution is not globally bounded. A
natural idea is to bound the normalized solution from below by a singular
quasi plurisubharmonic function (qpsh for short). This is where generalized
Monge-Ampeére capacities play a crucial role.

We recall the notion of the classical capacity Cap,, introduced and studied
in [Kot03] and [GZ05]:

Cap,,(FE) = sup {/ (w+ddu)” | uwePSH(X,w), -1 <u< 0} , FCX.
E

83
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A strong comparison between the Lebesgue measure and Cap,,, as is
needed in a celebrated method due to Kotodziej [Kol98], does not hold in our
setting. We therefore study other capacities to provide an a priori C-estimate.
In dealing with complex Monge-Ampére equations in quasiprojective varieties
we were naturally lead to work with generalized capacities of type Cap,,_1
in [DNL14a] (see below for their definition).

In this paper, we make a systematic study of these capacities as well
as the more general Cap,, ,, capacities: let ¢, be two w-plurisubharmonic
functions on X such that ¢ < 1 on X modulo possibly a pluripolar set. The
(p, 1)-Capacity of a Borel subset E C X is defined by

Cap,, (E) := sup {/ (w+ddw)” | uwePSH(X,w), p<u< w} .
E

Here, for a w-psh function u, (w+dd‘u)™ is the non-pluripolar Monge-Ampere
measure of u. See Section 2 for the definition. When ¢ = — 1, we drop the
index ¢ and denote the (3 — 1,1))-Capacity by Cap,,

Capy, := Capy,_1 -

This is exactly the generalized capacity used in our previous paper [DNL14a).
If moreover 1) is constant, ¥ = C, we recover the Monge-Ampere capacity
defined above

Capg = Cap,,.

Given any subset E C X, we define the outer (¢, 1)-capacity of E by
Capy, ,(E) == inf {Capr(U) ’ U is an open subset of X, E C U} .

We say that the (¢, )-capacity characterizes pluripolar sets on X if for any
subset £ C X, the following holds

Cap, ,(E) = 0 <= E is a pluripolar subset of X.
If E C X is a Borel subset we set
hop,e(x) :=sup {u(z) | v € PSH(X,w),u<¢ on X, u< pqe. E}.

Here, quasi everywhere (q.e. for short) means outside a pluripolar set.
Let A’ Db E be its upper semicontinuous regularization which we call the
(p,)- extremal function of E. We establish a useful characterization of the
(¢, ¥)-capacity in terms of the relative extremal function for any subset.

When ¢ belong to the finite energy class £(X,w) we can bound Cap,, ,
by F(Cap,,) for some positive function F' which vanishes at 0. This uniform
control turns out to be very useful in studying convergence of the complex
Monge-Ampere operator since it allows us to replace quasi-continuous func-
tions by continuous ones without affecting the final result. We also prove
that the generalized Monge-Ampere capacity Cap,, ,, characterizes pluripolar
sets when the lower weight is in £(X,w):
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Theorem A. Assume that ¢ € E(X,w) and ¢ € PSH(X,w) such that ¢ < ¢
modulo a pluripolar subset.

(i) Let E C X be a Borel subset of X, and denote by hg the (p,1))-extremal
function of E. The outer (p,)-capacity of E is given by

<_hE +

e = [ (S5

X

Cap} o (E) = [ )MA (h).

{he<e}

where hp := h7,, 5 is the (¢, 1))-extremal function of E.

(ii) There exists a function F : RT — R such that lim,_,q+ F(t) =0 and
such that for all Borel subset F,

Cap, 4(E) < P(Cap,(E)).

(iii) Cap,, ,, characterizes pluripolar sets.

We stress that the function F' in (i7) is quite explicit (see Theorem 5.1.9).

As we have underlined, these generalized capacities play an important role
in studying complex Monge-Ampeére equations on quasi-projective varieties
(see [DNL14a]). We give in the second part of this paper several other
applications.

We consider the following complex Monge-Ampeére equation
(w+ dd°p)" = M fu", A € R. (5.0.2)

Assume that 0 < f € C*°(X \ D) satisfies Condition Hy, i.e. f can be written
as

f=e?""¥", % are quasi psh functions on X , ¢ € LY (X \ D).

When A = 0 and f satisfies [, fw" = [, w", we proved in [DNL14a] that
there is a unique normalized solution in £(X,w) which is smooth on X \ D.
When A > 0 and |- y Jw" < +oo the same result holds since the CO estimate
follows easily from the comparison principle.

Consider now the case when A\ < 0. In this case solutions do not always
exist and when they do, there may be many of them. Our result here says
that any solution in £(X,w) (if ezists) is smooth on X \ D.

Theorem B. Let 0 < f € C®(X \ D) N LY(X). Assume that f satisfies
Condition Hy and ¢ € £(X,w) is a solution of

(w+ dd°p)" = M fu™, X < 0.

Then ¢ is smooth on X \ D.
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Note that when A < 0 and equation (5.0.2) has a solution in £(X,w), the
measure 4 = fw" is dominated by MA (u) for some u € PSH(X,w) N L>(X).
In particular, f € LY(X).

We next investigate the case when A > 0 and f is not integrable on
X. Of course solutions do not always exist. But observe that when ¢ is
singular enough e? f will be integrable on X and it is then reasonable to find
a solution. For example, one can look at densities of the type

1
f—@a

which is not integrable. Here s is a holomorphic section of the line bundle
associated to D. Such densities have been considered by Berman and
Guenancia in their study of the compactification of the moduli space of
canonically polarized manifolds [BG13]. They have shown that there exists a
unique solution ¢ € £(X,w) which is smooth in X\ D. As another application
of the generalized Monge-Ampere capacities we show in the following result
that in a general context whenever a solution in £(X,w) exists it is smooth
outside D.

Theorem C. Assume 0 < f € C*(X \ D) satisfies Condition Hy. If the
equation
(w+ dd°p)" = M fu™, A >0

admits a solution ¢ € E£(X,w) then ¢ is smooth on X \ D.

Let us stress that in Theorem C we do not assume that [ x Jw" < +oo.
It turns out that the existence of solutions in £(X,w) is equivalent to the
existence of subsolutions in this class, these are easy to construct in concrete
situations (see Example 5.3.7). We also obtain a similar result in the case of
semipositive and big classes (see Theorem 5.3.8 and Example 5.3.9).

Finally we use generalized capacitites to study the critical integrability
of a given ¢ € PSH(X,w).
Theorem D. Let ¢ € PSH(X,w) and o = a(¢) € (0,400) be the canonical
threshold of ¢, i.e.

a=a(¢) :=sup{t >0 | e e LY(X)}.

Then there exists u € PSH(X,w) with zero Lelong number at all points such
that e*~? is integrable. Moreover, there exists a unique @ € E(X,w) such
that

(w4 ddp)™ = e~ W,

It turns out that one can even chose u = x o ¢ in £(X,w), as an explicit
function of ¢ with attenuated singularities (see Theorem 5.3.10).

The paper is organized as follows. In section 2 we recall some known
facts on energy classes, we introduce generalized capacities on compact
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Ké&hler manifolds and prove Theorem A. As an application of the generalized
capacities we give another proof of the domination principle in £(X,w) in
Section 3. In Section 4 we use generalized capacities to study complex
Monge-Ampere equations as (5.0.2). The proof of Theorem D will be given
in Section 4 as well.

5.1 Generalized Monge-Ampeéere Capacities

Let (X,w) be a compact Kéahler manifold of complex dimension n. In this
section we prove some basic properties of the (¢, )-capacity and of the
relative (o, )-extremal functions.

5.1.1 Energy classes

Definition 5.1.1. We let PSH(X,w) denote the class of w-plurisubharmonic
functions (w-psh for short) on X, i.e. the class of functions ¢ such that locally
@ = p+ u, where p is a local potential of w and w is a plurisubharmonic
function.

Let ¢ be some unbounded w-psh function on X and consider ¢; :=
max(¢, —j) the ”canonical approximants”. It has been shown in [GZ07] that
Lig;>—gy (W + dd°p;)"

is a non-decreasing sequence of Borel measures. We denote its limit by

MA () = (w +dd"¢)" = lim 1> jp(w + ddp;)".

Definition 5.1.2. We denote by £(X,w) the set of w-psh functions having
full Monge-Ampére mass:

E(X,w) := {cpEPSH(X,w) | /XMA(QO):/XQJ"}.

Let us stress that w-psh functions with full Monge-Ampere mass have
mild singularities. In particular, any ¢ € £(X,w) has zero Lelong numbers
v(p,-) = 0 (see [GZ07, Corollary 1.8]). We also recall that, for every
v € £(X,w) and any ¢ € PSH(X,w), the generalized comparison principle
is valid, namely

/ (w4 ddyY)" < / (w+ ddp)".
{o<v} {o<v}

Definition 5.1.3. Let x : R~ — R~ be an increasing function such that
x(0) = 0 and x(—o0) = —oco. We denote by &, (X,w) the class of w-psh
functions having finite x-energy:

EX,w) = {p € &(X,w) | x(~l¢]) € L'(MA (¢))} .
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For p > 0, we use the notation

EP(X,w) ==& (X,w), when x(t) = —(—t)".

5.1.2 The (¢, v)-Capacity

In this subsection we always assume that ¢, ¢ € PSH(X,w) are such that
¢ < 1 quasi everywhere on X. The (i, 1))-capacity of a Borel subset £ C X
is defined by

Cap,, ,,(E) := sup {/ MA (u) ! u € PSH(X,w), p <u< w} )
E
When ¢ = ¢ — 1, to simplify the notation we simply denote

Capw = Capwil’w.

If moreover ¢v = C is constant we recover the Monge-Ampere capacity
introduced in [BT82], [Ko103], [GZ05]. The following properties of the (¢, v)-
Capacity follow straightforward from the definition.

Proposition 5.1.4. (i) If By C Ea C X then Cap,, ,(E1) < Cap, ,(E2) -
(ii) If E1, Es,--- are Borel subsets of X then

[e¢) +0o0o
Capy,y U Ej| = Z Capy,y; (Ej).
j=1 j=1

(i1i) If By C Ey C -+ are Borel subsets of X then
oo
Cap%w U E; | = lim Capr(Ej).

) j—+o0
J=1

The outer (p,)-capacity of E is defined by
Cap}, ,(E) := inf {Cap,, ,(U) | U is an open subset of X, EC U} .

We say that the (p,1)-capacity characterizes pluripolar sets on X if for any
subset £ C X, the following holds

Cap, ,(E) = 0 <= E is a pluripolar subset of X.
Definition 5.1.5. If £ C X is a Borel subset we set
hyp,E = sup {u € PSH(X,w), u < ¢ quasi everywhere on E,u < on X},

where ”quasi everywhere” means outside a pluripolar set. The upper semicon-
tinuous regularization of hy, . g is called the relative (¢,1))-extremal function
of E.
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Proposition 5.1.6. Let £ C X.

(i) The function hY, , p is w-psh. It satisfies ¢ < h7,, p <1 on X and
hf; B = P quasi everywhere on E.

(ii) ZP C FE is pluripolar, then h;w’E\P = h:‘;,w,E; i particular h;‘;,w,P =

(i11) If (E;) are subsets of X increasing towards E C X, then h*soij
decreases towards h:"p bE

(i) If k4.5 = then E is pluripolar.

Proof. The statement (i) is a standard consequence of Bedford-Taylor’s work
[BT82]. Set Ey := E\ P, and denote by h = hf, , p, hi = h, , p the
corresponding (¢, 1)-extremal functions of F, E;. Since E; C E it is clear
that A1 > h. On the other hand h; = ¢ quasi everywhere on E; hence on E.
This yields h; < h whence equality.

Let us prove (ii7). Since (E}) is increasing, h; := h .1, 1s decreasing
toward h € PSH(X,w). It is clear that h > h7, , p. By definition, for each
J € N, h; = ¢ quasi everywhere on Fj;. It then follows that h = ¢ quasi
everywhere on E. We then infer that h < h;% g hence the equality.

To prove (iv) assume that h, 5 = . By definition of h := A7, &
and by Choquet’s lemma we can find an increasing sequence (u;) such that
u; = ¢ on E and (lim;_, 4 u;)* = h. Note that

*
FE C {(limsupw) < (limsupuj) },
Jj—+oo Jj—+0o

modulo a pluripolar set. The latter is also pluripolar, hence E is pluripolar.
O

Theorem 5.1.7. If p € £(X,w) and E C X s pluripolar then Capy, ,,(E) =
0.

Proof. Assume that ¢ € £(X,w) and fix a pluripolar set £ C X. By
translating ¢ and ¢ by a constant we can assume that ¢» < 0. It follows from
[GZ07, Proposition 2.2] that ¢ € &, (X, w) for some convex increasing function
X :R7™ = R7. We can find u € & (X,w),u < 0 such that £ C {u = —oo}.
We claim that

—2
x(=t)

Indeed, let v € PSH(X,w) such that ¢ < v < 1. We obtain immediately
that

Cap,, ,({u < —t}) < (Ey(u)+2"E\(¢)), Yt >O0.

1
/{u<—t} MA (v) < —x(—t) /{u<_t}(_X ou)MA (v).
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From this and [GZ07, Proposition 2.5] we get

—2
/{u<—t} MA() < x(—t) (Ex(u) + Ex(v)).

This coupled with the fundamental inequality in [GZ07, Lemma 2.3] yield
the claim. Since for any t > 0, F C {u < —t} we obtain

Cap?;,w(E) < Capwﬁ(u < —t) —0 as t— +oo.
O

From now on we fix ¢, two functions in £(X,w) such that ¢ < 1) quasi
everywhere on X.

Given any u € PSH(X,w) such that v < 0, it follows from [GZ07,
Example 2.14] (see also the Main Theorem in [CGZ08]) that u, := —(—u)P
belongs to £(X,w) for any 0 < p < 1. The same arguments can be applied
to get the following result:

Lemma 5.1.8. Let x : R~ — R™ be any measurable function. Assume that
there exists ¢ > 0 such that

sup |x(t)|(=t)"1=C < +oo.
t<—1

Then for any v € PSH(X,w) such that u < —1 and any 0 < p < q% we
have

/ X 0 up|MA (up) < 4,
X

where uy := —(—u)? and A is a positive constant depending only on C,p,q.

Proof. In the proof we use A to denote various positive constants which are
under control. By considering u/ := max(u, —7), the canonical approximants
of u, and letting 7 — +o0 it suffices to treat the case when u is bounded.
We compute

w4 ddupy = w + p(1 — p)(—u)P2du A d°u + p(—u)P " dd°u.
We thus get
0 < w +dduy < (—u)P"Hw + ddu) + w + (—u)P"*du A d°u.

We need to verify the following bounds:
/ X 0 up|(—u)PH(w + ddu)fF AR < A
X

and
/ X 0 up| (—u)P~2du A d°u A (w + ddu)® A w1 < A,
b's
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where k£ = 0,1, ...,n. Let us consider the first one. By assumption we have
X 0 up|(—up)~? < C.

To bound the first term, it thus suffices to get a bound for
/ (—w)P~ 1P (w 4 ddu)® A Ww"F,
X

which is easy since p + pg — 1 < 0. For the second one it suffices get a bound
for

/ (—u)P~2 Py A dou A (w + ddCu)® A WL
b's

which follows easily by the same reason and by integration by parts.
O

We know from Theorem 5.1.7 that Cap,,,, vanishes on pluripolar subsets
of X. This suggests that Cap,, is dominated by F(Cap,), where F is
some positive function vanishing at 0. The following result gives an explicit
formula of F.

Theorem 5.1.9. Let x : R™ — R™ be a convex increasing function and
v € E(X,w). Let ¢ > 0 be a positive real number such that

ts<u_p1 IX(®)|(—t)"? < +o0. (5.1.1)

Then for any p < %ﬂ there exists C > 0 depending on p, q, X, such that

C
Cap,, o(K) < —, VK C X.
T )

*Capw(K)T
As a concrete example, when ¢ € £%9(X,w) for some ¢ > 0 and p <
1/(1+ q), then we can take F(s) :=s'n for s > 0, getting
Cap,, o(K) < C’Capw(K)%.

Proof. Fix p > 0 such that p(¢ + 1) < 1. Let Vi be the extremal w-
plurisubharmonic function of K:

Vi = sup{u ‘ u € PSH(X,w), u <0 on K},

and Mg = supy Vji. It follows from (5.1.1) and Lemma 5.1.8 that the
function
u=—(=Vg + Mg +1)P

belongs to £, (X,w). Fix h € PSH(X,w) be such that ¢ < h < 0. It follows
from Lemma 5.1.10 below that

/ |x o u/MA (h) < C1,
X
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where C1 > 0 only depends on Y, p,q and . Therefore, using the fact that
Vi = 0 quasi everywhere on K we get

[xo ul Ci
MA (h) < / — <
/ x XM = Ix(= M)
It follows from [GZ05] that Mg > CyCap(K)~/™. This coupled with the

above yield the result. O

Lemma 5.1.10. Assume that x, p,q and ¢ are as in Theorem 5.1.9. Then
there exists C > 0 depending on x,p, q, ¢ such that

/ Ix(— P)IMA (v) < C, Vu,v € PSH(X,w), supu=—1, ¢ <v <0.
X
Proof. We argue by contradiction, assuming that there are two sequences
(uj), (v;) of functions in PSH(X,w) such that supyu; = —1, ¢ < v; <0,
and
J = CwMA () > 2055, vj e N
Set

+oo ‘ +o0 '
U= ZZfJuj, v = 227711]-.
j=1 J=1
Then v € PSH(X,w), u < —1. Moreover, it follows from Lemma 5.1.8 that

up = —(—u)P € & (X, w).

We also have ¢ < v <0, in particular v € &, (X,w). But

/ |x o up| MA (v >ZQJ

which contradicts [GZ07, Proposition 2.5]. O

Proposition 5.1.11. Let E be a Borel subset of X and set hgp := h*%w B
the relative (@, v)-extremal function of E. Then

MA (hg) =0 on {hg < ¥} \ E.

Proof. We first assume that 1 is continuous on X. Set h := hg and let
w9 € X \ E be such that (h — ¢)(z0) < 0. Let B := B(xp,7) C X \ E be a
small ball around xg such that supg(h — ¢)(x) = —26 < 0. Let p be a local
potential of w in B. Shrinking B a little bit we can assume that supg |p| < 0
and osczy < §/2. By definition of h and by Choquet’s lemma we can find
an increasing sequence (u;); C £(X,w) such that u; = ¢ quasi everywhere
on F, u; <1 on X, and (lim;u;)* = h. For each j,k € N, we solve the
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Dirichlet problem to find v;? € PSH(X,w) N L*™°(X) such that MA (vf) =0
in B and v;? = max(u;, —k) on X \ B. Since

p+vf§p+h§—5+¢§sup¢—5
B

on 9B, we deduce from the maximum principle that v;? <infgy—§/2—p <
on B. Furthermore, taking k£ big enough such that ¢ > —k, we can conclude
that vf < Y on X. For j € N fixed, by the comparison principle (vf)k
decreases to vj € E(X,w). Then u; < vj < h since v; = uj; = ¢ on F and
i <1 on X. It follows from [GZ07] that the sequence of Monge-Ampere
measures M A(v; k) converges weakly to M A(v;). Thus M A(v;)(B) = 0. On
the other hand v; increases almost everywhere to h and these functions
belong to £(X,w). The same arguments as in [GZ07, Theorem 2.6] show
that M A(v;) converges weakly to M A(h). We infer that M A(h)(B) = 0.
It remains to remove the continuity hypothesis on 1. Let (1;) be a
sequence of continuous functions in PSH(X, w) decreasing to ¢ on X. Let
hj = hi,, g be the relative (p,1))-extremal function of K. Then h;
decreases to h, hence MA (h;) converges weakly to MA (h). Denote by
V:={h <} \ E. Now, fix ¢ > 0 and U an open subset of X such that

Cap, [(U\V)U(VAU)] <e

From the first step we know that MA (h;) vanishes on V. Thus

/VMA(h) < /MA )+ F(e)

< hmlnf/ MA (h F(e)
Jj—+oo
< hmlnf/ MA (h;) + 2F(¢)
j—+o0
= 2F(e
It suffices now to let ¢ — 0 since lim._,o F'(¢) = 0 thanks to Theorem
5.1.9. -

Lemma 5.1.12. Let E C X be a Borel subset and hg = h:;,w,E be its
relative (o, )-extremal function. Then we have

Cap, ()< [ MA ().
{he<y}

Proof. Observe first that the (¢, 1))-capacity can be equivalently defined by

Cap,, ,,(F) := sup {/EMA (u) | w € PSH(X,w), p <u< w} :
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For simplicity, set h := hg. Now take any u € PSH(X,w) such that p < u <
1. Then
Ec{h<u}Cc{h<},

where the first inclusion holds modulo a pluripolar set. The comparison
principle for functions in £(X,w) (see [GZ07]) yields

/E MA) < /{ IR ZUE /{ A < /{ M,

By taking the supremum over all candidates u, we get the result. O

The following result says that the inequality in Lemma 5.1.12 is an
equality if F is a compact or open subset of X.

Theorem 5.1.13. Let E be an open (or compact) subset of X and let
hg = hi, , g be the (¢, ¥)-extremal function of E. The (¢, )-capacity of E
s given by
Cap,, ,,(E) :/ MA(hE).
{he<y}

Proof. From Lemma 5.1.12 above we get one inequality. We now prove the
opposite one. Set h := hp. Assume first that F is a compact subset of X. Let
(1j) be a sequence of continuous w-psh functions decreasing to . Denote by
hj = hg . - It is easy to check that h; decreases to h and that Cap,, . (E)

decreases to Cap,, ,,(E). Since hj; is a candidate defining the (¢, 1;)-capacity
of E, it follows from Proposition 5.1.11 and Lemma 5.1.12 that

Capij(E)—/{hv<¢v}MA(hj)—/EMA(hj). (5.1.2)

Fix jo € N. Since h; < hj, and ¢ < 9;, for any j > jo

/ MA(h;) > / MA(h;j).
{hj<t;} {hjo<v}

Fix £ > 0 and replacing ¢ by a continuous function ¢ such that Capw({ﬁ #*
1}) < e. Arguing as in the proof of Proposition 5.1.11 we get

nminf/ MA(h;) > / MA(R).
I7400 J{hjo <t} {hio<v}
Taking the limit for j — 400 in (5.1.2) we get
Cap,, ,(E) 2/ MA(R).
{h<y}

We now assume that £ C X is an open set. Let (Kj;) be a sequence of
compact subsets increasing to E. Then clearly h; := h;w K; N h and
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Ca‘pgpﬂ/)(Kj) N CapW/,(E). We have already proved that Cap%w(Kj) >
f{hj<¢} MA(h;). For each fixed k € N, we have

ljminf/ MA(h;) > liminf/ MA(h;) 2/ MA(h).
I7ree My <y} I7te0 Jih<y} {he<y}

Then letting k& — 400 and using the first part of the proof we get

lim inf Cap,, ,,(K;) > / MA(h).
{h<y}

j—+o0 -

On the other hand, it is clear that lim; ., Cap,, ,(K;) = Cap,, ,,(E), and
hence

Cap%w(E) > / MA(h).
{h<3p}

O]

Now we want to give a formula for the outer (p,1)-capacity. Assume
that F is a Borel subset of X. We introduce an auxiliary function

—hg, g tY

¢::¢,,E: —<P+¢
o 0 if p=—00

if o> —oc (5.1.3)

Observe that ¢ is a quasicontinuous function, 0 < ¢ < 1 and ¢ = 1 quasi
everywhere on E.

Theorem 5.1.14. Let E C X be a Borel subset and denote by hg := hfp W.E
the (@, v)-extremal function of E. Then

—h
Cavio(8)= [ s = [ (L) A

To prove Theorem 5.1.14 we need the following results.

Lemma 5.1.15. Let (u;) be a bounded monotone sequence of quasi-continuous
functions converging to u. Let x be a convex weight and {p;} C & (X,w) be
a monotone sequence converging to ¢ € £,(X,w). Then

Juvia (o) —— [ unae)

X J—+oo X

Proof. Fix € > 0. Let U be an open subset of X with Cap,,(U) < € and vj,v
be continuous functions on X such that v; = u; and v =u on K := X \ U.
By Theorem 5.1.9 (and by letting ¢ — 0) it suffices to prove that

/vaA(st).—> vMA (¢).
X Jotoo Jx
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From Dini’s theorem v; converges uniformly to v on K. Thus, using again
Theorem 5.1.9, the problem reduces to proving that

/ vMA (pj) —— [ vMA (¢).

X Jj—+oo X

But the latter obviously follows since v is continuous on X. The proof is
thus complete. O

Proposition 5.1.16. Let E be a compact or open subset of X and let
hg :=hj, , p denote the (¢, 1)-extremal function of E. Then

Cap,, ,(E) = /{ s MA (hp) = /X (ﬂ) MA (hp).

Proof. The first equality has been proved in Theorem 5.1.13. Set h := hg
and ¢ := ¢y E = __hf:f. Observe that {h < 9} = {¢ > 0} modulo a
pluripolar set and ¢ < 1. Thus

/{h<w} MA (h) > /X dMA (h)

Assume that F is compact. By Proposition 5.1.11 and Theorem 5.1.13 we
have

Cap,, 4(E) = /E MA (h)

Since ¢ = 1 quasi everywhere on E we obtain

/EMA(h)g/XqSMA(h)

We assume now that £ C X is an open subset. Let (K;) be a sequence of
compact subsets increasing to £. Then

Cap,, ,,(E) = ng}rloo Cap,, ,,(K;) = ]ETOO/ ¢»; MA (h
where hj = h? o K and ¢; 1= ¢y 4 k; is defined by (5.1.3). Since ¢; is
quasicontlnuous for any j and ¢; N\, ¢, the conclusion follows from Lemma
5.1.15. ]

Lemma 5.1.17. Let u,v be w-plurisubharmonic functions. Let G C X be
an open subset. Set E ={u <v}NG and hg :=h}, , p. Then

h
Capl, ,(E) = Cap,, 4(E) = /{ A = /X (_;Lf) MA (hg).
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Proof. We start showing the first identity. First, just by definition Capj’;ﬂp(E ) >
Cap,, ,(E). Fix e > 0. There exists a function ¥ € C(X) such that

Cap, ({6 # v}) <
Clearly E C ({u < 0} N G)U{0 # v} and so, applying Theorem 5.1.9 we get

Capy, ,,(E) Cap,,,({u <0} NG) + F(e)

Cap,, ,,(E) + 2F (e),

IN A

where F(e) — 0 as € — 0. Taking the limit as € — 0 we arrive at the first
conclusion.

Let now { K} be a sequence of compact sets increasing to G and {u;} be
a sequence of continuous functions decreasing to u. Then E; = {u; +1/j <
v} N Kj is compact and E; 7 E. Set

—p+1’ —p+19

Observe that hj \, h and ¢; \, ¢. By Proposition 5.1.16 and Lemma 5.1.15
we have

h = h@7w7E7 ¢ = hj = h;ko,dJ,E]’7 ¢] =

Cap%w(E) = lim Cap%w(Ej)

j—+oo

= lim /X¢J MA (hj)

j—+oo

_ /ngMA(h)</{h<w}MA(h).

Furthermore, for each fixed k£ € N, using Theorem 5.1.9 we can argue as
above to get

lim inf / MA () > lim inf / MA () > / MA (h).
I7+00 J{hj<y} J= 100 Sy <y} {he<t}

Letting £ — +o00 and using Proposition 5.1.16 again we get
Cap,, ,,(E) 2/ MA (h),
{h<v}

which completes the proof. O
We are now ready to prove Theorem 5.1.14.

Proof. As usual, for simplicity, set h := hg. By definition of the outer
capacity there is a sequence (O;) of open sets decreasing to E such that
Capy, ,,(E) = lim;, 1o Cap,, 4 (0;). Furthermore by Choquet’s lemma there
exists a sequence (u;) of w-psh functions such that u; = ¢ quasi everywhere
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on E, u; <1 on X and u; / h. Since Cap:;,w vanishes on pluripolar sets
(see Theorem 5.1.7) we can assume that u; = ¢ on E. For any j, we set
E; =0;Nn{u; < ¢p+1/j} and h; := W p.p,- Then (Ej) is a decreasing
sequence of open subsets such that £ C E; C O; and uj —1/j < h; < h,
thus h; 7 h. Clearly Capy, ,(E) = 11H1]—>+oo Capwb(E ). By Lemma 5 1.17
and Lemma 5.1.15 we get

Jim_ Capl () = lim Capy(B) = tim_ [ 6,MA(h) = [ oA,
where ¢; := ¢y g; is defined by (5.1.3). O

Corollary 5.1.18. Let K C X be a compact set and (Kj) a sequence of
compact subsets decreasing to K. Then

(i) Cap;w(K) = Capcpﬂp(K) =limj 4o Cap%w(Kj),
(1) Ny ey 7 Mo i

Proof. The first equality in statement (i) comes straightforward from Theo-
rem 5.1.13 and Theorem 5.1.14. The second one follows from (ii) and Theorem
5.1.14. It remains to prove (ii). Since (K;) decreases to K, h;j := Wk,

increases to some hy, € £(X,w). Clearly ho < h. Thus we need to prove
that hoo > h. Since {hoo < h} C {hoo < 9} \ K modulo a pluripolar set,

[ MAG) < [ MA (hao).

From Proposition 5.1.11 we know that

/ MA(hj):O, Vj e N.
{h <Y I\K;

Fix € > 0 and let 1. € C(X) such that Cap, ({1 # ¥}) < e. Then for each
fixed k € N, we have

/ MA (ha) < / MA (hoo) + F(e)
(o <O\ Phoo <t 1\ Ky
< liminf / MA (h;) + F(e)
J=rtoo {hoo<1/)s}\Kk
<

J—+00

lim inf/ MA (hj) 4+ 2F(¢)

< hminf/ MA (h;) + 2F(¢)
{h; <\ Ky

J—+o00
— 2R (),
where F'(¢) — 0 as € — 0 thanks to Theorem 5.1.9. Thus, letting ¢ — 0 then

k — 400 and using the domination principle below (Proposition 5.2.1) we
can conclude that Ao > h. ]
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5.1.3 Proof of Theorem A

Let us briefly resume the proof of Theorem A. Statements (i) and (ii) have
been proved in Theorem 5.1.14 and Theorem 5.1.9 respectively. One direction
of the last staement has been proved in Theorem 5.1.7. Now, if E is a Borel
subset of X such that Cap, ,(£) = 0 then it follows from Theorem 5.1.14

that
/{h;,w,Ew} o

We then can apply the domination principle (see [BL12] or Proposition 5.2.1
below for a proof) to conclude.

5.2 Another proof of the Domination Principle

The following domination principle was proved by Dinew using his uniqueness
result [Din09], [BL12]. As an application of the (¢, 1)-Capacity we propose
here an alternative proof.

Proposition 5.2.1. If u,v € £(X,w) such that u < v MA(v)-almost every-
where then u < v on X.

Proof. We first claim that for every ¢ € £(X,w) such that 0 < ¢ —u < C
for some constant C' > 0 and for any s > 0 one has

/ MA(p) = 0.
{v<u—s}

Indeed, fix s > 0 and let ¢ be such a function. Let C' > 0 be a constant such
that ¢ —u < C on X. Choose § € (0,1) such that 6C < s. Now, by using
the comparison principle and the fact that 0 < ¢ —u < C we get

5 / MA(p) = / (6w + dd5)"
{v<u—s} {v<u—s}

< MA (8¢ + (1 - 6)u)

/{v<§<p+(1—6)u—s}

< MA(v)

/{v<§<p+(1—6)u—s}

< / MA(v) =0.
{v<u}

Thus, the claim is proved. Now for each ¢ > 0 let h; denote the (u, 0)-extremal
function of the open set Gy := {u < —t}. It is clear that for every ¢t > 0,
hi € £(X,w) and supy (hy — u) < 4+00. The previous step yields

/ MA(h) =0, Vs > 0.
{v<u—s}
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Fix e > 0. Let @ be a continuous function on X such that Cap,,({u # a}) < e.
Since hy increases to 0 (see Lemma 5.2.2 below), we infer that

t——+o0

/ w" < lim inf/ MA (h¢) + Cap,, o({u # @}).
{v<a—s} {v<u—s}
Repeating this argument we get
| wrsetCapy(lu £ ).
{v<u—s}

Letting € — 0 and using Theorem 5.1.9 we get Vol({v < u — s}) = 0, for any
s > 0 which implies that v < v on X as desired. ]

Lemma 5.2.2. Let v € PSH(X,w). For each t > 0, set Gy := {v < —t}.
Denote by hy the (¢,0)-extremal function of Gy. Then hy increases quasi
everywhere on X to O when t increases to +oo.

Proof. We know that h; increases quasi everywhere to h € £(X,w) and that

h < 0. By Theorem 5.1.7 (up to consider —(—v)? with p € (0,1) instead of
v), we get

t£+moo Cap,, o(Gt) = 0.

It follows from Theorem 5.1.13 that for each ¢t > 0,

MA(h) < / MA(ht) = Capy, o(Gt).

{h<0} {ht<0}
We thus get
MA(h) < liminf MA(ht) =0.
{h<0} t=+00 Jih<o}

The comparison principle yields Vol({h < 0}) = 0 which completes the
proof. O

Remark 5.2.3. Lemma 5.2.2 is stated and proved in the case 1) = 0. Observe
that it also holds for any ¥ € £(X,w) such that ¢ < 1. To see this we
can follow the same arguments of above but for the final step where we get
1 < h MA (h)-almost everywhere. We then conclude using the domination
principle.
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5.3 Applications to Complex Monge-Ampere equa-
tions

In this section (in the same spirit of [DNL14a]) we prove Theorem B by
using Capy, := Capy,_; 4. Let us recall the setting. Let X be a compact
Kahler manifold of dimension n and let w be a Kéahler form on X. Let D be
an arbitrary divisor on X. Consider the complex Monge-Ampére equations

(w4 dd°p)™ = M fuw™, X € R. (5.3.1)
We say that f satisfies Condition H if

f=e""¥", ¢* are quasi psh functions on X , ¢~ € L (X \ D).

We have already treated the case when A = 0 in [DNL14a]. If A > 0
and f is integrable then the same arguments can be applied. More precisely,
C-estimates follow from comparison principle while the C? estimate follows
exactly the same way as in [DNL14a].

The case when A < 0 is known to be much more difficult. We need the
following observation where we make use of the generalized capacity Cap,,:

Lemma 5.3.1. Let ¢ € £(X,w) be normalized by supy ¢ = 0. Assume that
there exist a positive constant A and ¢ € PSH(X,w/2) such that MA (p) <
e~ AW, Then there exists C > 0 depending only on fX e 242w such that

o> —C.

Observe that for all A >0 and ¢ € £(X,w), e~ 4%w" € L(X) as follows
from Skoda integrability theorem [Sko72], [Zer01], since functions in £(X,w)
have zero Lelong number at all points [GZ07].

Proof. Set

1/n

H(t) = [Capw({go < - t})] , t>0.

Observe that H (t) is right-continuous and H(+o00) = 0 (see [DNL14a, Lemma
2.6]). It follows from [DNL14a, Lemma 2.7] that Cap, < 2"Cap,. By a
strong volume-capacity domination in [GZ05] we also have

N
vol, < exp Un |
Capy

where C} depends only on (X,w). Thus using [DNL14a, Proposition 2.8]
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and the assumption on the measure MA (p), we get

PCple<v—t-s) < [ MAG
o

IN

/ e A2 AYMA (o)
{p<y—t}

1/2 1/2
|:/ eZAprn:| [/ wn]
X {p<yp—t}

< Gy [Capy({p < v —1})]°,

where Cy depends on [ x e~ 249" We then get

IN

sH(t+s) < Ca/"H(t)%, ¥t > 0,Vs € [0, 1].

Then by [EGZ09, Lemma 2.4] we get ¢ > ¢ — C3, where C3 only depends
on fX e~ 24eyym, ]

Now, we are ready to prove Theorem B.

5.3.1 Proof of Theorem B

It suffices to treat the case when A = —1. Since f satisfies Condition H; we
can write log f = 1t — 1™, where 1)* are qpsh functions on X, 1~ is locally
bounded on X \ D and there exists a uniform constant C' > 0 such that

dd“y* > —Cuw, sup Yt < C.
We apply the smoothing kernel p. in Demailly regularization theorem [Dem92]
to the functions ¢ and ¥*. For € small enough, we get
dd°pe(p +9~) > —Cw, dd°pe(y ") > —Chw, Sippa(dﬁ_) <,
where C depends on C' and the Lelong numbers of the currents Cw + dd®y)™.

By the classical result of Yau [YauT78], for each e, there exists a unique
smooth w-psh function ¢, satisfying

MA (¢.) = e=tPe@N=pelet¥T)yn — g ;" sup ¢ = 0,
X
where ¢, is a normalization constant such that

/gew”—/ e“"fw"—/ w".
X b'e X

Since by Jensen’s inequality ef<(—¥H+ogf) < p_(e=#tlogf) and er-(—¥+losf)
converges point-wise to e”?f on X, it follows from the general Lebesgue
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dominated convergence theorem that eP=(—¢+108.1) converges to e % f in L (X)
when € | 0. This means that c. converges to zero when € — 0. It then follows
from [DNL14a, Lemma 3.4] that ¢. converges in L!'(X) to ¢ — supy . We
now apply the C? estimate in [DNL14a, Theorem 3.2] to get

n+ Agp. < Cye 2P(#HV7) < 0 =20 t¥7)

where C3, Cy are uniform constants (do not depend on ¢). Now, we need to
bound ¢ from below. By the assumption on f we have

MA (p) = e¥" ~(#t¥7)yn < o=ty =C)yn.

Consider ¢ := ﬁ(gp + 7). Since this function belongs to PSH(X,w/2)
we can apply Lemma 5.3.1 to get

@ —supp > 1P —Cs.
X

This gives ¢ > Cgp~ — C7. Applying again this argument to ¢. and noting
that c. converges to 0, and hence under control, we get

¢ > pe(p+97) = Cg > Coyp~ — Chp.

We can now conclude using the same arguments in [DNL14a, Section 3.3].

5.3.2 (Non) Existence of solutions

In the previous subsection, no regularity assumption on D has been done. We
now discuss about the existence of solutions in concrete examples, assuming
more information on D, f.

Let D = Zjvzl D; be a simple normal crossing divisor on X. Reacall that
”simple normal crossing” means that around each intersection point of k
components D, ,...,D;, (k < N), we can find complex coordinates z1, ..., 2,
such that for each [ = 1,..., k the hypersurface Dj, is locally given by z; = 0.

For each j, let L; be the holomorphic line bundle defined by D;. Let
s; be a holomorphic section of L; defining Dj, i.e D; = {s; = 0}. We fix a

hermitian metric h; on L; such that [s;| := [s;], < 1/e.
We assume that f has the following particular form:
h
f= > 0, (5.3.2)

N 2 1+a’ @
Hj:l |s|2(—log |s;)

where h is a bounded function: 0 < 1/B < h < B, B > 0.
In this subsection we always assume that A\ < 0.

Proposition 5.3.2. Assume that [ satisfies (5.3.2) with 0 < a < 1. Then
there is no solution in £(X,w) to equation

(w4 dd°p)" = e fu™.
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Proof. We can assume (up to normalization) that A = —1. Then observe
that if there exists ¢ € £(X,w) such that (w + dd°p)"™ = e~ ?u, where p is a
positive measure, then we can find A > 0 such that

< A(w + ddu)”,

where u := e(#~5UPx ©)/7 ig 4 hounded w-psh function. Indeed, u is a w-psh
function and

w+ddu>w+ Ealdccp > E(w + dd°p) > 0.
n n

This coupled with [DNL14a, Proposition 4.4 and 4.5] yields the conclusion.
O

The above analysis shows that there is no solution if the density has
singularities of Poincaré type or worse. We next show that when f is less
singular than the Poincaré type density (i.e. a > 1), equation (5.3.1) has
a bounded solution provided A = —e with € > 0 very small. We say that f
satisfies Condition S(B, «) for some B > 0, o > 0 if

,,—e—ee
Hj:l‘sj’ (—log |s;|)

Theorem 5.3.3. Assume that f satisfies Condition S(B,«) with o > 1.
We also normalize f so that fX fw™ = fX w". Then for A= —c with e > 0
small enough depending only on C, o, w, there exists a bounded solution o to
(5.3.1).

The solution is automatically continuous on X. In particular, it is also
smooth on X \ D if f is smooth there.

Proof. The last statement follows easily from our previous analysis. Let
us prove the existence. We use the Schauder Fixed Point Theorem. Let
C = C(2B, a) be the constant in Lemma 5.3.4 below. Choose £ > 0 very

small such that e < 2. Consider the following compact convex set in
LY(X):
C:={uePSH(X,w) | —C<u<0}.

Let ¢ € C and ¢, be a constant such that

/e_awﬂwfw”:/ w™.
X X

Since —C' < ¢ < 0, it is clear that —Ce < ¢y, < 0. Let ¢ be the unique
bounded w-psh function such that supy ¢ = 0 and

(w + ddctp)n — efstrcwfwn'
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The density on the right-hand side satisfies Condition S(B, «) since ¢y, <0
and since e#¢ < 2. We thus get from Lemma 5.3.4 below that ¢ > —C'. Thus
we have defined a mapping from C to itseft

o:C—=C, P):=e.

Let us prove that ® is continuous on C. Let v; be a sequence in C which
converges to ¢ in L!'(X). Denote by

cj =y, = cy, P(Y)) = @4, O(Y) = ¢

It is enough to prove that any cluster point of the sequence (¢;) is equal
to ¢. Therefore, we can assume that ¢; converges to g in LY(X) and up
to extracting a subsequence that v; converges almost everywhere to ¢ on
X and also that ¢; converges to ¢y € [-Ce¢,0]. Since e~<¥ite f converges
in L'(X) to e™*¥*%f in L'(X) and almost everywhere, it follows from
[DNL14a, Lemma 3.4] that

(w + ddp)™ = e~V T fu,

It is clear that ¢y = ¢ and it follows from Hartogs’ lemma that sup y ¢ = 0.
Thus ¢g = . This concludes the continuity of ®.

Now, since C is compact and convex in L'(X) and since ® is continuous
on C, by Schauder Fixed Point Theorem there exists a fixed point of &, say
¢. Then ¢ — ¢, /e is the desired solution. O

We refer the reader to [DNL14a, Section 4.2] for the proof of the following
lemma.

Lemma 5.3.4. Assume that f satisfies Condition S(B,«) with o > 1,
B > 0. Let ¢ € E(X,w) be the unique function such that

(w4 dd)" = fw", supy = 0.
b'e
Then ¢ > —C with C = C(B,«a) > 0.
5.3.3 Proof of Theorem C
Assume that ¢ € £(X,w) satisfies
(w + ddp)™ = e fuw", A > 0.

Up to rescaling w it suffices to treat the case when A = 1. The proof of
Theorem C is quite similar to that of Theorem B. The difference here is that
f is not integrable. For convenience of the reader we rewrite the arguments
here. Since f satisfies Condition H; we can write log f = ¢ —¢~, where
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Y* are qpsh functions on X, ¢~ is locally bounded on X \ D and there
exists a uniform constant C' > 0 such that

ddy* > —Cw, supyt < C.
X

We apply the smoothing kernel p. in Demailly regularization theorem [Dem92]
to the functions ¢ and ¥*. For ¢ small enough, we get

ddcps(ﬂ)_) > —Chw, ddcps(90 + ¢+) > —Chw, Supps(@ =+ ¢+) < Cla
X

where C; depends on C, the Lelong numbers of the currents Cw + dd®)*
and supy ¢. By the classical result of Yau [Yau78], for each e, there exists a
unique smooth w-psh function ¢, satisfying

MA (¢z—:) = ecs+ps(§0+¢+)—pg(w7)wn = gz—:wn, S&P ¢ =0,

where c. is a normalization constant such that

/ggw”:/ e‘pfw”:/w".
X X X

Since by Jensen’s inequality ers(#F1o8f) < p_(e¥H1o8f) and ers(¥H1oef) con-
verges point-wise to e¥ f on X, it follows from the general Lebesgue dominated
convergence theorem that e?s(#+1°8/) converges to e?f in L' (X) when € | 0.
This means that c. converges to zero when ¢ — 0. It then follows from
Lemma 3.4 in [DNL14a] that ¢. converges in L'(X) to ¢ —supy ¢. We now
apply the C? estimate in Theorem 3.2 in [DNL14a] to get

n+ Ap. < Cze2:07) < Cue 2V,

where C5, Cy are uniform constants (do not depend on ¢). Now, we need to
bound ¢ from below. By the assumption on f we have

MA (p) = PP g < =T =C)

Consider 1) := 559 ~. Since this function belongs to PSH(X,w/2) we can
apply Lemma 5.3.1 to get

p—supyp > —Cs.
X

Now the remaining part of the proof follows by exactly the same way as we
have done in [DNL14a, Section 3.3].
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5.3.4 Non Integrable densities

When 0 < f ¢ L'(X) it is not clear that we can find a solution ¢ € £(X,w)
of equation

(w4 ddp)" = e? fw".
We show in the following that it suffices to find a subsolution. Another
similar result has been proved by Berman and Guenancia in [BG13] using the
variational approach. We provide here a simple proof using our generalized
Monge-Ampére capacities.

Theorem 5.3.5. Let 0 < f be a measurable function such that fX fw™ =
+o00. If there exists u € E(X,w) such that MA (u) > e“fw™ then there is a
unique ¢ € E(X,w) such that

MA (¢) = e? fw".

Proof. The uniqueness follows easily from the comparison principle. Indeed,
one can find a proof in [BG13, Proposition 3.1]. We now establish the
existence. For each j € N we can find ¢; € PSH(X,w) N L>(X) such that

(w+ddp;)" = e¥I min(f, j)w".

It follows from the comparison principle that ¢, is non-increasing and ¢; > u.
Then ¢; | ¢ € £(X,w) and by continuity of the complex Monge-Ampere
operator along decreasing sequence in £(X,w) we get

MA () = e? fw".

Indeed, since MA (¢;) converges weakly to MA (¢), from Fatou’s lemma we
get
MA (p) = e” fu"

in the sense of positive Borel measures. To get the reverse inequality we
need to show that the right-hand side has full mass, i.e.

et = [ o,

Fix € > 0. Since ¢ is w-psh, in particular quasi-continuous, we find U an
open subset of X such that Cap,,(U) < € and ¢ is continuous on K := X \ U.
Then ¢ is bounded on K and hence f must be integrable on K. We thus
can apply the Lebesgue Dominated Convergence Theorem on K to get

lim MA (¢;) = lim e¥ min(f, j)w" = / e’ fw™.
J—=+oo J i J—=too J i K

We can assume that ¢; < 0. It follows from Theorem 5.1.9 that

/ MA (¢;) < Cap, o(U) < F(e) + 0 ase 0.
U
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This implies that

/e‘pfw" > /e‘pfw”: lim MA (¢;)
X K

= /XMA(%)—jggloo UMA(@]')

> /Xw"—F(a).

By letting ¢ — 0 we get [ e fw”™ = [, w", which completes the proof. [

Remark 5.3.6. Theorem 5.3.5 also holds if w is merely semipositive and
big.

Example 5.3.7. Let D = Z;V: 1 D;j be a simple normal crossing divisor on
X. Assume that the D; are defined by s; = 0, where s; are holomorphic
sections such that |s;| < 1/e. Consider the following density

1
—~ -
Hj:l 552

Then for suitable positive constants C1, Cs the following function

f=

N
pi=—2) log(—log|s;| + C1) — Cy
j=1

is a subsolution of MA (¢) = e® fw™. In fact, it suffices to find a function
u € £(X,w/2) such that e"f is integrable (see Example 5.3.9).

5.3.5 The case of semipositive and big classes

In this section we try to extend our result in Theorem C to the case of
semipositive and big classes. Let 6 be a smooth closed semipostive (1,1)-
form on X such that [, 6" > 0. Assume that E = Z;‘il a;E; is an effective
simple normal crossing divisor on X such that {6} — ¢1(F) is ample. Let
0 < f is a non-negative measurable function on X. Consider the following
degenerate complex Monge-Ampere equation

(0 + dd°p)" = e? fuw". (5.3.3)
As in Theorem C we obtain here a similar regularity for solutions in £(X,w):

Theorem 5.3.8. Assume that 0 < f € C>(X \ D) satisfies Condition Hjy.
Let 6 and E be as above. If there is a solution in E(X,w) of equation (5.3.3)
then this solution is also smooth on X \ (DU E).

Note that in Theorem 5.3.8 we do not assume that f is integrable on X.
We also stress that there is at most one solution in £(X, ) (see [BG13]).
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Proof. We adapt the proof of Theorem 3 in [DNL14a] where we followed
essentially the ideas in [BEGZ10]. Assume that ¢ € £(X, ) is a solution to
equation (5.3.3). By assumption on f we can find a uniform constant C' > 0
such that

f=e"TVT ddoyt > —Cwn, supy” < €, supp < C, Y7 € L (X\D).

We regularize ¢ and 1)* by using the smoothing kernel p. in Demailly’s work
[Dem92]. Then for € > 0 small enough we have

dd°p:(v") > —Ciw, ddp.(p + 1) > —Cyw, Sup p(p+9T) < O,

where C; depends on C and the Lelong numbers of the currents Cw + dd)™.
For each € > 0 by the famous result of Yau [Yau78| there exits a unique
smooth ¢. € PSH(X, 0 + ew) normalized by supy ¢ = 0 such that

(0 + ew + dd°p)" = eceteetvd —ve n g-w",

where ¢, is a normalized constant. As in the proof of Theorem 3 in [DNL14a]
we can prove that c. converges to 0 as € | 0. We then can show that
¢. converges in L' to ¢ — supy ¢. Now, we can apply Theorem 5.1 and
Theorem 5.2 in [DNL14a] to get uniform bound on ¢. and A,¢. on every
compact subset of X \ (D U FE). From this we can get the smoothness of ¢
on X \ (DU E) as in [DNLI14a]. O

It follows from Theorem 5.3.5 (which is also valid in the case of semiposi-
tive and big classes) that to solve the equation it suffices to find a subsolution
in £(X,0). We show in the following example that in some cases it is easy
to find a subsolution in £(X,6).

Example 5.3.9. We consider the density given in Example 5.3.7. Assume
that 0 satisfies {0} — ¢1(E) > 0, where E = Z]]Vil a;E; is an effective simple
normal crossing divisor on X. Assume that F; is defined by the zero locus
of a holomorphic section o; such that |o;| < 1/e. Then for some constants
p € (0,1) and a > 0, A € R the following function

N LM P
U= — —aZlog|sj|—§Zajlog|o—j| —A
j=1 j=1
belongs to £(X,0/2) and verifies [, e*fw" = 27" [, §". It follows from
[BEGZ10] that there exists v € £(X,6/2) such that v <0 and
(0/2 + ddv)" = e" fw™.

It is easy to see that ¢ :=u+v € £(X,0) is a subsolution of (5.3.3).
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5.3.6 Critical Integrability

Recently, Berndtsson [Ber13] solved the openness conjecture of Demailly and
Kollar [DKO01] which says that given ¢ € PSH(X,w) and

a(¢) = sup{t >0 | e e LY(X)} < 400,

then one has e=*? ¢ L'(X) (a stronger version of the openness conjecture
has been quite recently obtained by Guan and Zhou [GZ13]).

In the following result, we use the generalized capacity to show that e~®¢
is however not far to be integrable in the following sense:

Theorem 5.3.10. Let ¢ € PSH(X,w) and a = a(¢) € (0,4+00) be the
canonical threshold of ¢. Then we can find ¢ € PSH(X,w) having zero
Lelong number at all points of X such that

/ PP < 400,
X

In what follows we give a proof of the above result that uses generalized
Monge-Ampere capacities. However, using a constructive proof, one can
chose p = xy o ¢ € E(X,w) for some x increasing convex function.

Proof. Let aj be an increasing sequence of positive numbers which converges
to a. By assumption we have e~%? is integrable on X. We can assume that
¢ < 0. We solve the complex Monge-Ampeére equation

(w + ddCp;)™ = e¥i™ %P,

For each j, since e®? belongs to LPi for some pj > 1, it follows from
the classical result of Kotodziej [Kol98] that ¢; is bounded. Moreover, the
comparison principle reveals that ¢; is non-increasing. Now, we need to
bound ¢; uniformly from below by some singular quasi-psh function.
Let 1/2 > ¢ > 0 be a very small positive number. By assumption we
know that
ele=®? ¢ LP(X), p=p::= aa— 822 > 1.

Set 1 1= e¢ € PSH(X,w/2) and consider the function

H(t) := [Capy(p; < ¥ —1)]"", t>0.

It follows from [DNL14a, Lemma 2.7] that Cap, < 2"Cap,. By a strong
volume-capacity domination in [GZ05, Remark 5.10] we also have

0y
vol,, < exp Un |
Capy
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where C7 depends only on (X,w). Fix t > 0,s € [0,1]. Using [DNL14a,
Proposition 2.8] and Holder inequality we get

s"Capy({p; <¢p—t—s}) < /{ oty MA (¢;)
®j -

< / e Pie? MA (¥5)
{pi<y—t}

{pj<v—t}
1/p 1/q
< |:/ 6(5/2a)¢wn:| [/ wn]
X {pj<v—t}
< Gy [Capy({p; <v —1})]°,

a—e/2
a—¢

constant C > 0 depends on € and also on fX ele/2=a)d,n  We then get

where p = p. := > 1 and ¢ > 1 is the exponent conjugate of p. The

sH(t+s) < Ca/"H(t)%, ¥ > 0,Vs € [0,1].
Then by [EGZ09, Lemma 2.4] we get
80] 2 5¢ - CE,

where C. only depends on e and fX ele/2=)%y"  Then we see that ©;j
decreases to p € PSH(X,w) and ¢ satisfies

p>ep—Ce..

Since € is arbitrarily small we conclude that ¢ has zero Lelong number
everywhere on X. Finally, it follows from Fatou’s lemma that e¥~®? is
integrable on X. O

We now show with an indipendent and constructive argument that ¢ can
be chosen to be in £(X,w), more precisely ¢ = x o ¢,

/ XYM < foo,
X

for some x : R~ — R~ increasing convex function such that y(—o0) = —oo
and x/(—o0) = 0. Note that x o ¢ € £(X,w) thanks to [CGZ08]. We are
grateful to H. Guenancia for the following constructive proof.

We can always assume that ¢ < —1. For each k € N let

ay = log/ e~ (@27 Doyn 4o, (5.3.4)
X
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Define the sequence (ci) inductively by
c1 = a1, Cpr1 = max(cg + 4k, axy1), Yk > 1.
Define another sequence (t;) by
ty =1, tper = 26" (epqr — cp), VE > 1.
Define x : (—oo,—1] = R~ by
X(—=t) = =27% — ¢ if t € [tg, tpy], VE > 1.

It follows from (5.3.4) that

e(a—2*k71)t VOI(dD < —t) </ e—(a—Q*k—1)¢wn < eCk .

X

Thus using (5.3.5), (5.3.6) and the above inequality we get

+oo
/ eX(@)—adyn < ex(Zhta a/ X (=) yol(¢p < —t)dt
b'e 1

IN

E=1"1tk

IN

k=1"tk

IN
Q
+
o
+
8
\
i
|
o
-
L
=

IN

“+o0
C+a Z 2k+1€—2*k*1tk
k=1

IN

+oo
C+a Z gk+1,—27" (ck—ck—1)
k=1

—+00

< C+a22k+1€72(k71)
k=1

< C+4a.

190 rhgps
Cta). / X yol(¢p < —t)dt

[t 2kl _9—k¢
C+a E / ekt - “Ckdt

(5.3.5)

(5.3.6)

The above result is quite optimal as the following example shows:

Example 5.3.11. Let (X,w) be a compact Kéhler manifold and D be a
smooth complex hypersurface on X defined by a holomorphic section s such

that |s| < 1/e. Consider

(Zs = 210g|8| - (_ 10g|8|)p7 JAS (071)

(5.3.7)
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By rescaling w we can assume that ¢ € PSH(X,w). Then for any ¢ > 0

e~? n
/X<—¢>>q°" -

The example above has been given in [ACKT09] in the case of one complex
variable which is locally similar to our setting. Assume now that ¢ is given
by (5.3.7). It follows from Theorem 5.3.10 that we can find ¢ € PSH(X,w)
having zero Lelong number everywhere such that

/ e 0" < 400.
X
In this concrete example one such function ¢ can be given explicitly by

¢ = —(log|s|)? — (1 +¢)log(log [s]), € > 0.

Proof of Theorem D. It follows from the above proof of Theorem 5.3.10 that
there exists u € £(X,w/2) such that e“~*? is integrable. We then can argue
as in Example 5.3.9 to find a subsolution which also yields a solution thanks
to Theorem 5.3.5. The uniqueness follows from the comparison principle (see

[BG13)). O
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